Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package applies several machine learning methods, including SVM, bagSVM, Random Forest and CART to RNA-Seq data.
This package provides a package containing an environment representing the MG_U74Cv2.CDF file.
metaCCA performs multivariate analysis of a single or multiple GWAS based on univariate regression coefficients. It allows multivariate representation of both phenotype and genotype. metaCCA extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.
Base annotation databases for mouse, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.
This package provides a package containing an environment representing the MG_U74A.cdf file.
MEIGOR provides a comprehensive environment for performing global optimization tasks in bioinformatics and systems biology. It leverages advanced metaheuristic algorithms to efficiently search the solution space and is specifically tailored to handle the complexity and high-dimensionality of biological datasets. This package supports various optimization routines and is integrated with Bioconductor's infrastructure for a seamless analysis workflow.
Calculates a single number for a whole sequence that reflects the propensity of a DNA binding protein to interact with it. The DNA binding protein has to be described with a PFM matrix, for example gotten from Jaspar.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Mouse430A\_2\_probe\_tab.
Agilent annotation data (chip mgug4104a) assembled using data from public repositories.
MethylMix is an algorithm implemented to identify hyper and hypomethylated genes for a disease. MethylMix is based on a beta mixture model to identify methylation states and compares them with the normal DNA methylation state. MethylMix uses a novel statistic, the Differential Methylation value or DM-value defined as the difference of a methylation state with the normal methylation state. Finally, matched gene expression data is used to identify, besides differential, functional methylation states by focusing on methylation changes that effect gene expression. References: Gevaert 0. MethylMix: an R package for identifying DNA methylation-driven genes. Bioinformatics (Oxford, England). 2015;31(11):1839-41. doi:10.1093/bioinformatics/btv020. Gevaert O, Tibshirani R, Plevritis SK. Pancancer analysis of DNA methylation-driven genes using MethylMix. Genome Biology. 2015;16(1):17. doi:10.1186/s13059-014-0579-8.
Data Package automatically created on Sun Nov 19 15:59:29 2006.
Raw amplification data from a large microRNA mixture / dilution study. These data are used by the miRcomp package to assess the performance of methods that estimate expression from the amplification curves.
MS-based metabolomics data processing and compound annotation pipeline.
This package provides a package containing an environment representing the MoGene-1_0-st-v1.cdf file.
This package provides pathway enrichment techniques for miRNA expression data. Specifically, the set of methods handles the many-to-many relationship between miRNAs and the multiple genes they are predicted to target (and thus affect.) It also handles the gene-to-pathway relationships separately. Both steps are designed to preserve the additive effects of miRNAs on genes, many miRNAs affecting one gene, one miRNA affecting multiple genes, or many miRNAs affecting many genes.
Collection of functions to calculate a nucleotide sequence surrounding for splice donors sites to either activate or repress donor usage. The proposed alternative nucleotide sequence encodes the same amino acid and could be applied e.g. in reporter systems to silence or activate cryptic splice donor sites.
DNA methylation contains information about the regulatory state of the cell. MIRA aggregates genome-scale DNA methylation data into a DNA methylation profile for a given region set with shared biological annotation. Using this profile, MIRA infers and scores the collective regulatory activity for the region set. MIRA facilitates regulatory analysis in situations where classical regulatory assays would be difficult and allows public sources of region sets to be leveraged for novel insight into the regulatory state of DNA methylation datasets.
Test datasets from the MACS3 test examples are use in the examples of the `MACSr` package. All 9 datasets are uploaded to the `ExperimentHub`. The original data can be found at: https://github.com/macs3-project/MACS/.
implements a MsBackend for the Spectra package using Thermo Fisher Scientific's NewRawFileReader .Net libraries. The package is generalizing the functionality introduced by the rawrr package Methods defined in this package are supposed to extend the Spectra Bioconductor package.
Affymetrix Affymetrix Mu19KsubC Array annotation data (chip mu19ksubc) assembled using data from public repositories.
Modified quantile normalization for omics or other matrix-like data distorted in location and scale.
Analysis of de novo copy number variants in trios from high-dimensional genotyping platforms.
The package implements MBASED algorithm for detecting allele-specific gene expression from RNA count data, where allele counts at individual loci (SNVs) are integrated into a gene-specific measure of ASE, and utilizes simulations to appropriately assess the statistical significance of observed ASE.
The goal of MineICA is to perform Independent Component Analysis (ICA) on multiple transcriptome datasets, integrating additional data (e.g molecular, clinical and pathological). This Integrative ICA helps the biological interpretation of the components by studying their association with variables (e.g sample annotations) and gene sets, and enables the comparison of components from different datasets using correlation-based graph.