Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Numerical integration of continuously differentiable functions f(x,y) over simple closed polygonal domains. The following cubature methods are implemented: product Gauss cubature (Sommariva and Vianello, 2007, <doi:10.1007/s10543-007-0131-2>), the simple two-dimensional midpoint rule (wrapping spatstat.geom functions), and adaptive cubature for radially symmetric functions via line integrate() along the polygon boundary (Meyer and Held, 2014, <doi:10.1214/14-AOAS743>, Supplement B). For simple integration along the axes, the cubature package is more appropriate.
Population dynamic models underpin a range of analyses and applications in ecology and epidemiology. The various approaches for analysing population dynamics models (MPMs, IPMs, ODEs, POMPs, PVA) each require the model to be defined in a different way. This makes it difficult to combine different modelling approaches and data types to solve a given problem. pop aims to provide a flexible and easy to use common interface for constructing population dynamic models and enabling to them to be fitted and analysed in lots of different ways.
Prepares data for statistical analysis (e.g., analysis of variance ;ANOVA) by enabling the user to easily and quickly merge (using the file_merge() function) raw data files into one merged table and then aggregate the merged table (using the prep() function) into a finalized table while keeping track and summarizing every step of the preparation. The finalized table contains several possibilities for dependent measures of the dependent variable. Most suitable when measuring variables in an interval or ratio scale (e.g., reaction-times) and/or discrete values such as accuracy. Main functions included are file_merge() and prep(). The file_merge() function vertically merges individual data files (in a long format) in which each line is a single observation to one single dataset. The prep() function aggregates the single dataset according to any combination of grouping variables (i.e., between-subjects and within-subjects independent variables, respectively), and returns a data frame with a number of dependent measures for further analysis for each cell according to the combination of provided grouping variables. Dependent measures for each cell include among others means before and after rejecting all values according to a flexible standard deviation criteria, number of rejected values according to the flexible standard deviation criteria, proportions of rejected values according to the flexible standard deviation criteria, number of values before rejection, means after rejecting values according to procedures described in Van Selst & Jolicoeur (1994; suitable when measuring reaction-times), standard deviations, medians, means according to any percentile (e.g., 0.05, 0.25, 0.75, 0.95) and harmonic means. The data frame prep() returns can also be exported as a txt file to be used for statistical analysis in other statistical programs.
This package contains functions to compute and plot confidence distributions, confidence densities, p-value functions and s-value (surprisal) functions for several commonly used estimates. Instead of just calculating one p-value and one confidence interval, p-value functions display p-values and confidence intervals for many levels thereby allowing to gauge the compatibility of several parameter values with the data. These methods are discussed by Infanger D, Schmidt-Trucksäss A. (2019) <doi:10.1002/sim.8293>; Poole C. (1987) <doi:10.2105/AJPH.77.2.195>; Schweder T, Hjort NL. (2002) <doi:10.1111/1467-9469.00285>; Bender R, Berg G, Zeeb H. (2005) <doi:10.1002/bimj.200410104> ; Singh K, Xie M, Strawderman WE. (2007) <doi:10.1214/074921707000000102>; Rothman KJ, Greenland S, Lash TL. (2008, ISBN:9781451190052); Amrhein V, Trafimow D, Greenland S. (2019) <doi:10.1080/00031305.2018.1543137>; Greenland S. (2019) <doi:10.1080/00031305.2018.1529625> and Rafi Z, Greenland S. (2020) <doi:10.1186/s12874-020-01105-9>.
This package provides functions to get prediction intervals and prediction points of future observations from mixture distributions like gamma, beta, Weibull and normal.
Simulate the dynamic of lion populations using a specific Individual-Based Model (IBM) compiled in C.
Anomaly detection method based on the paper "Truth will out: Departure-based process-level detection of stealthy attacks on control systems" from Wissam Aoudi, Mikel Iturbe, and Magnus Almgren (2018) <DOI:10.1145/3243734.3243781>. Also referred to the following implementation: <https://github.com/rahulrajpl/PyPASAD>.
Post-selection inference in linear regression models, constructing simultaneous confidence intervals across a user-specified universe of models. Implements the methodology described in Kuchibhotla, Kolassa, and Kuffner (2022) "Post-Selection Inference" <doi:10.1146/annurev-statistics-100421-044639> to ensure valid inference after model selection, with applications in high-dimensional settings like Lasso selection.
The PROMETHEE method is a multi-criteria decision-making method addressing with outranking problems. The method establishes a preference structure between the alternatives, having a preference function for each criterion. IN this context, three variants of the method is carried out: PROMETHEE I (Partial Outranking), PROMETHEE II (Total Outranking), and PROMETHEE III (Outranking by Intervals).
Design, backtest, and analyze portfolio strategies using simple, English-like function chains. Includes technical indicators, flexible stock selection, portfolio construction methods (equal weighting, signal weighting, inverse volatility, hierarchical risk parity), and a compact backtesting engine for portfolio returns, drawdowns, and summary metrics.
This package contains common univariate and multivariate portmanteau test statistics for time series models. These tests are based on using asymptotic distributions such as chi-square distribution and based on using the Monte Carlo significance tests. Also, it can be used to simulate from univariate and multivariate seasonal time series models.
Perform sample size, power calculation and subsequent analysis for Immuno-oncology (IO) trials composed of responders and non-responders.
Access a variety of PubMed data through a single, user-friendly interface, including abstracts <https://pubmed.ncbi.nlm.nih.gov/>, bibliometrics from iCite <https://icite.od.nih.gov/>, pubtations from PubTator3 <https://www.ncbi.nlm.nih.gov/research/pubtator3/>, and full-text records from PMC <https://www.ncbi.nlm.nih.gov/pmc/>.
Bayesian toolbox for quantitative proteomics. In particular, this package provides functions to generate synthetic datasets, execute Bayesian differential analysis methods, and display results as, described in the associated article Marie Chion and Arthur Leroy (2023) <arXiv:2307.08975>.
This package provides a dataset of Pokemon information in both English and Brazilian Portuguese. The dataset contains 949 rows and 22 columns, including information such as the Pokemon's name, ID, height, weight, stats, type, and more.
Wrapper of the Petfinder API <https://www.petfinder.com/developers/v2/docs/> that implements methods for interacting with and extracting data from the Petfinder database. The Petfinder REST API allows access to the Petfinder database, one of the largest online databases of adoptable animals and animal welfare organizations across North America.
This package provides a polycross is the pollination by natural hybridization of a group of genotypes, generally selected, grown in isolation from other compatible genotypes in such a way to promote random open pollination. A particular practical application of the polycross method occurs in the production of a synthetic variety resulting from cross-pollinated plants. Laying out these experiments in appropriate designs, known as polycross designs, would not only save experimental resources but also gather more information from the experiment. Different experimental situations may arise in polycross nurseries which may be requiring different polycross designs (Varghese et. al. (2015) <doi:10.1080/02664763.2015.1043860>. " Experimental designs for open pollination in polycross trials"). This package contains a function named PD() which generates nine types of polycross designs suitable for various experimental situations.
Jointly segment several ChIP-seq samples to find the peaks which are the same and different across samples. The fast approximate maximum Poisson likelihood algorithm is described in "PeakSegJoint: fast supervised peak detection via joint segmentation of multiple count data samples" <doi:10.48550/arXiv.1506.01286> by TD Hocking and G Bourque.
This package provides tools for calculating and viewing topological properties of phylogenetic trees.
This package provides path_chain class and functions, which facilitates loading and saving directory structure in YAML configuration files via config package. The file structure you created during exploration can be transformed into legible section in the config file, and then easily loaded for further usage.
Permutation (randomisation) test for single-case phase design data with two phases (e.g., pre- and post-treatment). Correction for dependency of observations is done through stepwise resampling the time series while varying the distance between observations. The required distance 0,1,2,3.. is determined based on repeated dependency testing while stepwise increasing the distance. In preparation: Vroegindeweij et al. "A Permutation distancing test for single-case observational AB phase design data: A Monte Carlo simulation study".
This package provides tools for Natural Language Processing in French and texts from Marcel Proust's collection "A La Recherche Du Temps Perdu". The novels contained in this collection are "Du cote de chez Swann ", "A l'ombre des jeunes filles en fleurs","Le Cote de Guermantes", "Sodome et Gomorrhe I et II", "La Prisonniere", "Albertine disparue", and "Le Temps retrouve".
Compute the price of different types of call using different methods. The types available are Vanilla European Calls, Vanilla American Calls and American Digital Calls. Available methods are Montecarlo Simulation, Montecarlo Simulation with Antithetic Variates, Black-Scholes and the Binary Tree.
Read, process, fit, and analyze photosynthetic gas exchange measurements. Documentation is provided by several vignettes; also see Lochocki, Salesse-Smith, & McGrath (2025) <doi:10.1111/pce.15501>.