Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the Simulating Optimal FUNctioning framework for site-scale simulations of ecosystem processes, including model calibration. It contains Fortran 90 modules for the P-model (Stocker et al. (2020) <doi:10.5194/gmd-13-1545-2020>), SPLASH (Davis et al. (2017) <doi:10.5194/gmd-10-689-2017>) and BiomeE (Weng et al. (2015) <doi:10.5194/bg-12-2655-2015>).
Mixture Composer <https://github.com/modal-inria/MixtComp> is a project to build mixture models with heterogeneous data sets and partially missing data management. It includes models for real, categorical, counting, functional and ranking data. This package contains the minimal R interface of the C++ MixtComp library.
This package provides fast implementations of Random Forests, Gradient Boosting, and Linear Random Forests, with an emphasis on inference and interpretability. Additionally contains methods for variable importance, out-of-bag prediction, regression monotonicity, and several methods for missing data imputation.
An integrated solution to perform a series of text mining tasks such as importing and cleaning a corpus, and analyses like terms and documents counts, lexical summary, terms co-occurrences and documents similarity measures, graphs of terms, correspondence analysis and hierarchical clustering. Corpora can be imported from spreadsheet-like files, directories of raw text files, as well as from Dow Jones Factiva', LexisNexis', Europresse and Alceste files.
This package provides a collection of HTML', JavaScript', CSS and fonts assets that generate Redoc documentation from an OpenAPI Specification: <https://redocly.com/redoc/>.
This package provides a statistical tool for multivariate modeling and clustering using stepwise cluster analysis. The modeling output of rSCA is constructed as a cluster tree to represent the complicated relationships between multiple dependent and independent variables. A free tool (named rSCA Tree Generator) for visualizing the cluster tree from rSCA is also released and it can be downloaded at <https://rscatree.weebly.com/>.
Visualizations to explain the results of a topological data analysis. The goal of topological data analysis is to identify persistent topological structures, such as loops (topological circles) and voids (topological spheres), in data sets. The output of an analysis using the TDA package is a Rips diagram (named after the mathematician Eliyahu Rips). The goal of RPointCloud is to fill in these holes in the data by providing tools to visualize the features that help explain the structures found in the Rips diagram. See McGee and colleagues (2024) <doi:10.1101/2024.05.16.593927>.
This package provides functions for reconstructing individual-level data (time, status, arm) from Kaplan-MEIER curves published in academic journals (e.g. NEJM, JCO, JAMA). The individual-level data can be used for re-analysis, meta-analysis, methodology development, etc. This package was used to generate the data for commentary such as Sun, Rich, & Wei (2018) <doi:10.1056/NEJMc1808567>. Please see the vignette for a quickstart guide.
Regularised discriminant analysis functions. The classical regularised discriminant analysis proposed by Friedman in 1989, including cross-validation, of which the linear and quadratic discriminant analyses are special cases. Further, the regularised maximum likelihood linear discriminant analysis, including cross-validation. References: Friedman J.H. (1989): "Regularized Discriminant Analysis". Journal of the American Statistical Association 84(405): 165--175. <doi:10.2307/2289860>. Friedman J., Hastie T. and Tibshirani R. (2009). "The elements of statistical learning", 2nd edition. Springer, Berlin. <doi:10.1007/978-0-387-84858-7>. Tsagris M., Preston S. and Wood A.T.A. (2016). "Improved classification for compositional data using the alpha-transformation". Journal of Classification, 33(2): 243--261. <doi:10.1007/s00357-016-9207-5>.
Draw maps using the javascript library roughjs'. This allows to draw sketchy, hand-drawn-like maps.
Display a randomly selected quote about Richard M. Stallman based on the collection in the GNU Octave function fact() which was aggregated by Jordi Gutiérrez Hermoso based on the (now defunct) site stallmanfacts.com (which is accessible only via <http://archive.org>).
Frequentist sequential meta-analysis based on Trial Sequential Analysis (TSA) in programmed in Java by the Copenhagen Trial Unit (CTU). The primary function is the calculation of group sequential designs for meta-analysis to be used for planning and analysis of both prospective and retrospective sequential meta-analyses to preserve type-I-error control under sequential testing. RTSA includes tools for sample size and trial size calculation for meta-analysis and core meta-analyses methods such as fixed-effect and random-effects models and forest plots. TSA is described in Wetterslev et. al (2008) <doi:10.1016/j.jclinepi.2007.03.013>. The methods for deriving the group sequential designs are based on Jennison and Turnbull (1999, ISBN:9780849303166).
Exchange rate for Kenya Shilling against other currencies, US DOLLAR, EURO, STERLING POUND, Tanzania Shilling, Uganda Shilling.
This package performs goodness-of-fit tests for capture-recapture models as described by Gimenez et al. (2018) <doi:10.1111/2041-210X.13014>. Also contains several functions to process capture-recapture data.
This package provides an I/O interface between R data.frames and Raven DataFrames. Defines functions to both read and write DataFrame files, as well as serialize/deserialize data.frames/DataFrames.
Multiple interactive codes to view and analyze seismic data, via spectrum analysis, wavelet transforms, particle motion, hodograms. Includes general time-series tools, plotting, filtering, interactive display.
Designed to streamline data analysis and statistical testing, reducing the length of R scripts while generating well-formatted outputs in pdf', Microsoft Word', and Microsoft Excel formats. In essence, the package contains functions which are sophisticated wrappers around existing R functions that are called by using f_ (user f_riendly) prefix followed by the normal function name. This first version of the rfriend package focuses primarily on data exploration, including tools for creating summary tables, f_summary(), performing data transformations, f_boxcox() in part based on MASS/boxcox and rcompanion', and f_bestNormalize() which wraps and extends functionality from the bestNormalize package. Furthermore, rfriend can automatically (or on request) generate visualizations such as boxplots, f_boxplot(), QQ-plots, f_qqnorm(), histograms f_hist(), and density plots. Additionally, the package includes four statistical test functions: f_aov(), f_kruskal_test(), f_glm(), f_chisq_test for sequential testing and visualisation of the stats functions: aov(), kruskal.test(), glm() and chisq.test. These functions support testing multiple response variables and predictors, while also handling assumption checks, data transformations, and post hoc tests. Post hoc results are automatically summarized in a table using the compact letter display (cld) format for easy interpretation. The package also provides a function to do model comparison, f_model_comparison(), and several utility functions to simplify common R tasks. For example, f_clear() clears the workspace and restarts R with a single command; f_setwd() sets the working directory to match the directory of the current script; f_theme() quickly changes RStudio themes; and f_factors() converts multiple columns of a data frame to factors, and much more. If you encounter any issues or have feature requests, please feel free to contact me via email.
Non-linear transformations of data to better discover latent effects. Applies a sequence of three transformations (1) a Gaussianizing transformation, (2) a Z-score transformation, and (3) an outlier removal transformation. A publication describing the method has the following citation: Gregory J. Hunt, Mark A. Dane, James E. Korkola, Laura M. Heiser & Johann A. Gagnon-Bartsch (2020) "Automatic Transformation and Integration to Improve Visualization and Discovery of Latent Effects in Imaging Data", Journal of Computational and Graphical Statistics, <doi:10.1080/10618600.2020.1741379>.
This package provides color schemes for maps and other graphics designed by CARTO as described at <https://carto.com/carto-colors/>. It includes four types of palettes: aggregation, diverging, qualitative, and quantitative.
The Function performs a parallel analysis using simulated polychoric correlation matrices. The nth-percentile of the eigenvalues distribution obtained from both the randomly generated and the real data polychoric correlation matrices is returned. A plot comparing the two types of eigenvalues (real and simulated) will help determine the number of real eigenvalues that outperform random data. The function is based on the idea that if real data are non-normal and the polychoric correlation matrix is needed to perform a Factor Analysis, then the Parallel Analysis method used to choose a non-random number of factors should also be based on randomly generated polychoric correlation matrices and not on Pearson correlation matrices. Random data sets are simulated assuming or a uniform or a multinomial distribution or via the bootstrap method of resampling (i.e., random permutations of cases). Also Multigroup Parallel analysis is made available for random (uniform and multinomial distribution and with or without difficulty factor) and bootstrap methods. An option to choose between default or full output is also available as well as a parameter to print Fit Statistics (Chi-squared, TLI, RMSEA, RMR and BIC) for the factor solutions indicated by the Parallel Analysis. Also weighted correlation matrices may be considered for PA.
This package provides a methodology to perform multivariate measurement error adjustment using external validation data. Allows users to remove the attenuating effect of measurement error by incorporating a distribution of external validation data, and allows for plotting of all resultant adjustments. Sensitivity analyses can also be run through this package to test how different ranges of validity coefficients can impact the effect of the measurement error adjustment. The methods implemented in this package are based on the work by Muoka, A., Agogo, G., Ngesa, O., Mwambi, H. (2020): <doi:10.12688/f1000research.27892.1>.
R on FHIR is an easy to use wrapper around the HL7 FHIR REST API (STU 3 and R4). It provides tools to easily read and search resources on a FHIR server and brings the results into the R environment. R on FHIR is based on the FhirClient of the official HL7 FHIR .NET API', also made by Firely.
This package provides methods for downloading and processing data and metadata from Kolada', the official Swedish regions and municipalities database <https://www.kolada.se/>.
NanoString nCounter is a medium-throughput platform that measures gene or microRNA expression levels. Here is a publication that introduces this platform: Malkov (2009) <doi:10.1186/1756-0500-2-80>. Here is the webpage of NanoString nCounter where you can find detailed information about this platform <https://www.nanostring.com/scientific-content/technology-overview/ncounter-technology>. It has great clinical application, such as diagnosis and prognosis of cancer. Implements integrated system of random-coefficient hierarchical regression model to normalize data from NanoString nCounter platform so that noise from various sources can be removed.