Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We provides functions that employ splines to estimate generalized partially linear single index models (GPLSIM), which extend the generalized linear models to include nonlinear effect for some predictors. Please see Y. (2017) at <doi:10.1007/s11222-016-9639-0> and Y., and R. (2002) at <doi:10.1198/016214502388618861> for more details.
This package provides tools for studying genotype-phenotype maps for bi-allelic loci underlying quantitative phenotypes. The 0.1 version is released in connection with the publication of Gjuvsland et al (2013) and implements basic line plots and the monotonicity measures for GP maps presented in the paper. Reference: Gjuvsland AB, Wang Y, Plahte E and Omholt SW (2013) Monotonicity is a key feature of genotype-phenotype maps. Frontier in Genetics 4:216 <doi:10.3389/fgene.2013.00216>.
In practical applications, the assumptions underlying generalized linear models frequently face violations, including incorrect specifications of the outcome variable's distribution or omitted predictors. These deviations can render the results of standard generalized linear models unreliable. As the sample size increases, what might initially appear as minor issues can escalate to critical concerns. To address these challenges, we adopt a permutation-based inference method tailored for generalized linear models. This approach offers robust estimations that effectively counteract the mentioned problems, and its effectiveness remains consistent regardless of the sample size.
This package provides stat_isotonic() to add weighted univariate isotonic regression curves.
Identifying spatially variable genes is critical in linking molecular cell functions with tissue phenotypes. This package implemented a granularity-based dimension-agnostic tool for the identification of spatially variable genes. The detailed description of this method is available at Wang, J. and Li, J. et al. 2023 (Wang, J. and Li, J. (2023), <doi:10.1038/s41467-023-43256-5>).
Google offers public access to global search volumes from its search engine through the Google Trends portal. The package downloads these search volumes provided by Google Trends and uses them to measure and analyze the distribution of search scores across countries or within countries. The package allows researchers and analysts to use these search scores to investigate global trends based on patterns within these scores. This offers insights such as degree of internationalization of firms and organizations or dissemination of political, social, or technological trends across the globe or within single countries. An outline of the package's methodological foundations and potential applications is available as a working paper: <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3969013>.
Statistical testing procedures for detecting GxE (gene-environment) interactions. The main focus lies on GRSxE interaction tests that aim at detecting GxE interactions through GRS (genetic risk scores). Moreover, a novel testing procedure based on bagging and OOB (out-of-bag) predictions is implemented for incorporating all available observations at both GRS construction and GxE testing (Lau et al., 2023, <doi:10.1038/s41598-023-28172-4>).
Generalized Odds Rate Mixture Cure (GORMC) model is a flexible model of fitting survival data with a cure fraction, including the Proportional Hazards Mixture Cure (PHMC) model and the Proportional Odds Mixture Cure Model as special cases. This package fit the GORMC model with interval censored data.
Find the permutation symmetry group such that the covariance matrix of the given data is approximately invariant under it. Discovering such a permutation decreases the number of observations needed to fit a Gaussian model, which is of great use when it is smaller than the number of variables. Even if that is not the case, the covariance matrix found with gips approximates the actual covariance with less statistical error. The methods implemented in this package are described in Graczyk et al. (2022) <doi:10.1214/22-AOS2174>. Documentation about gips is provided via its website at <https://przechoj.github.io/gips/> and the paper by Chojecki, Morgen, KoÅ odziejek (2025, <doi:10.18637/jss.v112.i07>).
Plot density and distribution functions with automatic selection of suitable regions. Numerically invert (compute quantiles) distribution functions. Simulate real and complex numbers from distributions of their magnitude and arguments. Optionally, the magnitudes and/or arguments may be fixed in almost arbitrary ways. Create polynomials from roots given in Cartesian or polar form. Small programming utilities: check if an object is identical to NA, count positional arguments in a call, set intersection of more than two sets, check if an argument is unnamed, compute the graph of S4 classes in packages.
Generates (U,W) mixture graphs where U is a line graph graphon and W is a dense graphon. Graphons are graph limits and graphon U can be written as sequence of positive numbers adding to 1. Graphs are sampled from U and W and joined randomly to obtain the mixture graph. Given a mixture graph, U can be inferred. Kandanaarachchi and Ong (2025) <doi:10.48550/arXiv.2505.13864>.
Simulate and analyze multistate models with general hazard functions. gems provides functionality for the preparation of hazard functions and parameters, simulation from a general multistate model and predicting future events. The multistate model is not required to be a Markov model and may take the history of previous events into account. In the basic version, it allows to simulate from transition-specific hazard function, whose parameters are multivariable normally distributed.
Interface for extra high-dimensional smooth functions for Generalized Additive Models for Location Scale and Shape (GAMLSS) including (adaptive) lasso, ridge, elastic net and least angle regression.
Given an adjacency matrix drawn from a Generalized Stochastic Block Model with missing observations, this package robustly estimates the probabilities of connection between nodes and detects outliers nodes, as describes in Gaucher, Klopp and Robin (2019) <arXiv:1911.13122>.
Gene-Ranking Analysis of Pathway Expression (GRAPE) is a tool for summarizing the consensus behavior of biological pathways in the form of a template, and for quantifying the extent to which individual samples deviate from the template. GRAPE templates are based only on the relative rankings of the genes within the pathway and can be used for classification of tissue types or disease subtypes. GRAPE can be used to represent gene-expression samples as vectors of pathway scores, where each pathway score indicates the departure from a given collection of reference samples. The resulting pathway- space representation can be used as the feature set for various applications, including survival analysis and drug-response prediction. Users of GRAPE should use the following citation: Klein MI, Stern DF, and Zhao H. GRAPE: A pathway template method to characterize tissue-specific functionality from gene expression profiles. BMC Bioinformatics, 18:317 (June 2017).
This package performs linear regression with correlated predictors, responses and correlated measurement errors in predictors and responses, correcting for biased caused by these.
This package provides functions to fit geostatistical data. The data can be continuous, binary or count data and the models implemented are flexible. Conjugate priors are assumed on some parameters while inference on the other parameters can be done through a full Bayesian analysis of by empirical Bayes methods.
Easily explore data by creating ggplots through a (shiny-)GUI. R-code to recreate graph provided.
This package provides functions for the g-and-k and generalised g-and-h distributions.
An update to the Joint Location-Scale (JLS) testing framework that identifies associated SNPs, gene-sets and pathways with main and/or interaction effects on quantitative traits (Soave et al., 2015; <doi:10.1016/j.ajhg.2015.05.015>). The JLS method simultaneously tests the null hypothesis of equal mean and equal variance across genotypes, by aggregating association evidence from the individual location/mean-only and scale/variance-only tests using Fisher's method. The generalized joint location-scale (gJLS) framework has been developed to deal specifically with sample correlation and group uncertainty (Soave and Sun, 2017; <doi:10.1111/biom.12651>). The current release: gJLS2, include additional functionalities that enable analyses of X-chromosome genotype data through novel methods for location (Chen et al., 2021; <doi:10.1002/gepi.22422>) and scale (Deng et al., 2019; <doi:10.1002/gepi.22247>).
This package provides a comprehensive toolkit for geospatiotemporal analysis featuring 60+ vegetation indices, advanced raster visualization, universal spatial mapping, water quality analysis, CDL crop analysis, spatial interpolation, temporal analysis, and terrain analysis. Designed for agricultural research, environmental monitoring, remote sensing applications, and publication-quality mapping with support for any geographic region and robust error handling. Methods include vegetation indices calculations (Rouse et al. 1974), NDVI and enhanced vegetation indices (Huete et al. 1997) <doi:10.1016/S0034-4257(97)00104-1>, (Akanbi et al. 2024) <doi:10.1007/s41651-023-00164-y>, spatial interpolation techniques (Cressie 1993, ISBN:9780471002556), water quality indices (McFeeters 1996) <doi:10.1080/01431169608948714>, and crop data layer analysis (USDA NASS 2024) <https://www.nass.usda.gov/Research_and_Science/Cropland/>. Funding: This material is based upon financial support by the National Science Foundation, EEC Division of Engineering Education and Centers, NSF Engineering Research Center for Advancing Sustainable and Distributed Fertilizer production (CASFER), NSF 20-553 Gen-4 Engineering Research Centers award 2133576.
Enables users to create simple plots of biological culture plates as well as microplates. Both continuous and discrete values can be plotted onto the plate layout.
This package provides functions to identify European NUTS (Nomenclature of Territorial Units for Statistics) regions for geographic coordinates (latitude/longitude) using Eurostat geospatial boundaries. Includes map-based visualisation of the matched regions for validation and exploration. Designed for regional data analysis, reproducible workflows, and integration with common geospatial R packages.
The geographic dimension plays a fundamental role in multidimensional systems. To define a geographic dimension in a star schema, we need a table with attributes corresponding to the levels of the dimension. Additionally, we will also need one or more geographic layers to represent the data using this dimension. The goal of this package is to support the definition of geographic dimensions from layers of geographic information related to each other. It makes it easy to define relationships between layers and obtain the necessary data from them.