Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Defines classes and methods to process text-based cytogenetics using the CytoGPS web site, then import the results into R for further analysis and graphing.
This package provides tools for performing phylogenetic comparative methods for datasets with with multiple observations per species (intraspecific variation or measurement error) and/or missing data (Goolsby et al. 2017). Performs ancestral state reconstruction and missing data imputation on the estimated evolutionary model, which can be specified as Brownian Motion, Ornstein-Uhlenbeck, Early-Burst, Pagel's lambda, kappa, or delta, or a star phylogeny.
This package provides a set of R functions which provide an environment for the Time-Frequency analysis of 1-D signals (and especially for the wavelet and Gabor transforms of noisy signals). It was originally written for Splus by Rene Carmona, Bruno Torresani, and Wen L. Hwang, first at the University of California at Irvine and then at Princeton University. Credit should also be given to Andrea Wang whose functions on the dyadic wavelet transform are included. Rwave is based on the book: "Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S", by Rene Carmona, Wen L. Hwang and Bruno Torresani (1998, eBook ISBN:978008053942), Academic Press.
Rcmdr Plugin for the FactoMineR package.
Download and parse public files released by B3 and convert them into useful formats and data structures common to data analysis practitioners.
Estimates the total, between-, and within-cluster Spearman rank correlations for continuous and ordinal clustered data. See Tu et al. (2024) <DOI:10.1002/sim.10326> for details.
This package provides a port of Ruby Warrior. Teaches R programming in a fun and interactive way.
REDUCE is a portable general-purpose computer algebra system supporting scalar, vector, matrix and tensor algebra, symbolic differential and integral calculus, arbitrary precision numerical calculations and output in LaTeX format. REDUCE is based on Lisp and is available on the two dialects Portable Standard Lisp ('PSL') and Codemist Standard Lisp ('CSL'). The redcas package provides an interface for executing arbitrary REDUCE code interactively from R', returning output as character vectors. R code and REDUCE code can be interspersed. It also provides a specialized function for calling the REDUCE feature for solving systems of equations, returning the output as an R object designed for the purpose. A further specialized function uses REDUCE features to generate LaTeX output and post-processes this for direct use in LaTeX documents, e.g. using Sweave'.
This package implements random variables by means of S4 classes and methods.
This package provides algorithms to locate multiple distributional change-points in piecewise stationary time series. The algorithms are provably consistent, even in the presence of long-range dependencies. Knowledge of the number of change-points is not required. The code is written in Go and interfaced with R.
Generation of univariate and multivariate data that follow the generalized Poisson distribution. The details of the univariate part are explained in Demirtas (2017) <doi: 10.1080/03610918.2014.968725>, and the multivariate part is an extension of the correlated Poisson data generation routine that was introduced in Yahav and Shmueli (2012) <doi: 10.1002/asmb.901>.
This package implements Bayesian inference for the conditional genetic stock identification model. It allows inference of mixed fisheries and also simulation of mixtures to predict accuracy. A full description of the underlying methods is available in a recently published article in the Canadian Journal of Fisheries and Aquatic Sciences: <doi:10.1139/cjfas-2018-0016>.
Finds the k nearest neighbours for every point in a given dataset using Jose Luis nanoflann library. There is support for exact searches, fixed radius searches with kd trees and two distances, the Euclidean and Manhattan'. For more information see <https://github.com/jlblancoc/nanoflann>. Also, the nanoflann library is exported and ready to be used via the linking to mechanism.
This package performs all steps in the credit scoring process. This package allows the user to follow all the necessary steps for building an effective scorecard. It provides the user functions for coarse binning of variables, Weights of Evidence (WOE) transformation, variable clustering, custom binning, visualization, and scaling of logistic regression coefficients. The results will generate a scorecard that can be used as an effective credit scoring tool to evaluate risk. For complete details on the credit scoring process, see Siddiqi (2005, ISBN:047175451X).
Various statistical, graphics, and data-management functions used by the Rcmdr package in the R Commander GUI for R.
Adds the MIxing-Data Sampling (MIDAS, Ghysels et al. (2007) <doi:10.1080/07474930600972467>) components to a variety of GARCH and MEM (Engle (2002) <doi:10.1002/jae.683>, Engle and Gallo (2006) <doi:10.1016/j.jeconom.2005.01.018>, and Amendola et al. (2024) <doi:10.1016/j.seps.2023.101764>) models, with the aim of predicting the volatility with additional low-frequency (that is, MIDAS) terms. The estimation takes place through simple functions, which provide in-sample and (if present) and out-of-sample evaluations. rumidas also offers a summary tool, which synthesizes the main information of the estimated model. There is also the possibility of generating one-step-ahead and multi-step-ahead forecasts.
Load data from Yandex Direct API V5 <https://yandex.ru/dev/direct/doc/dg/concepts/about-docpage> into R. Provide function for load lists of campaings, ads, keywords and other objects from Yandex Direct account. Also you can load statistic from API Reports Service <https://yandex.ru/dev/direct/doc/reports/reports-docpage>. And allows keyword bids management.
This package provides a straightforward, easy-to-use and robust parsing package which aims to digest history files from the popular messenger service WhatsApp in all locales and from all devices.
This package provides tools for the analysis of reverse-phase protein arrays (RPPAs), which are also known as tissue lysate arrays or simply lysate arrays'. The package's primary purpose is to input a set of quantification files representing dilution series of samples and control points taken from scanned RPPA slides and determine a relative log concentration value for each valid dilution series present in each slide and provide graphical visualization of the input and output data and their relationships. Other optional features include generation of quality control scores for judging the quality of the input data, spatial adjustment of sample points based on controls added to the slides, and various types of normalization of calculated values across a set of slides. The package was derived from a previous package named SuperCurve. For a detailed description of data inputs and outputs, usage information, and a list of related papers describing methods used in the package please review the vignette Guide_to_RPPASPACE'. RPPA SPACE: an R package for normalization and quantitation of Reverse-Phase Protein Array data'. Bioinformatics Nov 15;38(22):5131-5133. <doi: 10.1093/bioinformatics/btac665>.
Helper functions to accompany the Blair, Coppock, and Humphreys (2022) "Research Design in the Social Sciences: Declaration, Diagnosis, and Redesign" <https://book.declaredesign.org>. rdss includes datasets, helper functions, and plotting components to enable use and replication of the book.
Rcpp Bindings for the C code of the Corpus Workbench ('CWB'), an indexing and query engine to efficiently analyze large corpora (<https://cwb.sourceforge.io>). RcppCWB is licensed under the GNU GPL-3, in line with the GPL-3 license of the CWB (<https://www.r-project.org/Licenses/GPL-3>). The CWB relies on pcre2 (BSD license, see <https://github.com/PCRE2Project/pcre2/blob/master/LICENCE.md>) and GLib (LGPL license, see <https://www.gnu.org/licenses/lgpl-3.0.en.html>). See the file LICENSE.note for further information. The package includes modified code of the rcqp package (GPL-2, see <https://cran.r-project.org/package=rcqp>). The original work of the authors of the rcqp package is acknowledged with great respect, and they are listed as authors of this package. To achieve cross-platform portability (including Windows), using Rcpp for wrapper code is the approach used by RcppCWB'.
This package implements sample size and power calculation methods with a focus on balance and fairness in study design, inspired by the Zoroastrian deity Rashnu, the judge who weighs truth. Supports survival analysis and various hypothesis testing frameworks.
This package contains a function to randomize subjects, patients in groups of sequences (treatment sequences). If a blocksize is given, the randomization will be done within blocks. The randomization may be controlled by a Wald-Wolfowitz runs test. Functions to obtain the p-value of that test are included. The package is mainly intended for randomization of bioequivalence studies but may be used also for other clinical crossover studies. Contains two helper functions sequences() and williams() to get the sequences of commonly used designs in BE studies.
Fits linear models to repeated ordinal scores using GEE methodology.