Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a methodology to perform multivariate measurement error adjustment using external validation data. Allows users to remove the attenuating effect of measurement error by incorporating a distribution of external validation data, and allows for plotting of all resultant adjustments. Sensitivity analyses can also be run through this package to test how different ranges of validity coefficients can impact the effect of the measurement error adjustment. The methods implemented in this package are based on the work by Muoka, A., Agogo, G., Ngesa, O., Mwambi, H. (2020): <doi:10.12688/f1000research.27892.1>.
This package implements safe policy learning under regression discontinuity designs with multiple cutoffs, based on Zhang et al. (2022) <doi:10.48550/arXiv.2208.13323>. The learned cutoffs are guaranteed to perform no worse than the existing cutoffs in terms of overall outcomes. The rdlearn package also includes features for visualizing the learned cutoffs relative to the baseline and conducting sensitivity analyses.
Implementation of Nelson rules for control charts in R'. The Rspc implements some Statistical Process Control methods, namely Levey-Jennings type of I (individuals) chart, Shewhart C (count) chart and Nelson rules (as described in Montgomery, D. C. (2013) Introduction to statistical quality control. Hoboken, NJ: Wiley.). Typical workflow is taking the time series, specify the control limits, and list of Nelson rules you want to evaluate. There are several options how to modify the rules (one sided limits, numerical parameters of rules, etc.). Package is also capable of calculating the control limits from the data (so far only for i-chart and c-chart are implemented).
Numerous functions for cohort-based analyses, either for prediction or causal inference. For causal inference, it includes Inverse Probability Weighting and G-computation for marginal estimation of an exposure effect when confounders are expected. We deal with binary outcomes, times-to-events, competing events, and multi-state data. For multistate data, semi-Markov model with interval censoring may be considered, and we propose the possibility to consider the excess of mortality related to the disease compared to reference lifetime tables. For predictive studies, we propose a set of functions to estimate time-dependent receiver operating characteristic (ROC) curves with the possible consideration of right-censoring times-to-events or the presence of confounders. Finally, several functions are available to assess time-dependent ROC curves or survival curves from aggregated data.
This package provides functions to analyse DNA fragment samples (i.e. derived from RFLP-analysis) and standalone BLAST report files (i.e. DNA sequence analysis).
This package provides R functions to selectively rasterize components of grid output.
Network-based regularization has achieved success in variable selection for high-dimensional biological data due to its ability to incorporate correlations among genomic features. This package provides procedures of network-based variable selection for generalized linear models (Ren et al. (2017) <doi:10.1186/s12863-017-0495-5> and Ren et al.(2019) <doi:10.1002/gepi.22194>). Continuous, binary, and survival response are supported. Robust network-based methods are available for continuous and survival responses.
Set of utilities to facilitate the reproduction of analysis in R. It allow to make_structure(), clean_structure(), and run and log programs in a predefined order to allow secondary files, analysis and reports be constructed in an ordered and reproducible form.
This package provides an R interface for using AmCharts Library. Based on htmlwidgets', it provides a global architecture to generate JavaScript source code for charts. Most of classes in the library have their equivalent in R with S4 classes; for those classes, not all properties have been referenced but can easily be added in the constructors. Complex properties (e.g. JavaScript object) can be passed as named list. See examples at <https://datastorm-open.github.io/introduction_ramcharts/> and <https://www.amcharts.com/> for more information about the library. The package includes the free version of AmCharts Library. Its only limitation is a small link to the web site displayed on your charts. If you enjoy this library, do not hesitate to refer to this page <https://www.amcharts.com/online-store/> to purchase a licence, and thus support its creators and get a period of Priority Support. See also <https://www.amcharts.com/about/> for more information about AmCharts company.
Visualizations to explain the results of a topological data analysis. The goal of topological data analysis is to identify persistent topological structures, such as loops (topological circles) and voids (topological spheres), in data sets. The output of an analysis using the TDA package is a Rips diagram (named after the mathematician Eliyahu Rips). The goal of RPointCloud is to fill in these holes in the data by providing tools to visualize the features that help explain the structures found in the Rips diagram. See McGee and colleagues (2024) <doi:10.1101/2024.05.16.593927>.
An implementation of algorithms for estimation of the graphical lasso regularization parameter described in Pedro Cisneros-Velarde, Alexander Petersen and Sang-Yun Oh (2020) <http://proceedings.mlr.press/v108/cisneros20a.html>.
This package provides a robust alternative to the aJIVE (angle based Joint and Individual Variation Explained) method (Feng et al 2018: <doi:10.1016/j.jmva.2018.03.008>) for the estimation of joint and individual components in the presence of outliers in multi-source data. It decomposes the multi-source data into joint, individual and residual (noise) contributions. The decomposition is robust to outliers and noise in the data. The method is illustrated in Ponzi et al (2021) <arXiv:2101.09110>.
Read Acoustic HAC format.
This package provides a pair of functions for calculating mean residual life (MRL) , median residual life, and percentile residual life using the outputs of either the flexsurv package or parameters provided by the user. Input information about the distribution, the given life value, the percentile, and the type of residual life, and the function will return your desired values. For the flexsurv option, the function allows the user to input their own data for making predictions. This function is based on Jackson (2016) <doi:10.18637/jss.v070.i08>.
An extension for roxygen2 to embed Shinylive applications in the package documentation.
Access to the C-level R date and datetime code is provided for C-level API use by other packages via registration of native functions. Client packages simply include a single header RApiDatetime.h provided by this package, and also import it. The R Core group is the original author of the code made available with slight modifications by this package.
Perform sigmoidal Emax model fit using Stan in a formula notation, without writing Stan model code.
This package provides functions to safely map from a vector of keys to a vector of values, determine properties of a given relation, or ensure a relation conforms to a given type, such as many-to-many, one-to-many, injective, surjective, or bijective. Permits default return values for use similar to a vectorised switch statement, as well as safely handling large vectors, NAs, and duplicate mappings.
This package implements full Bayesian analysis for calibrating mathematical models with new methodology for modeling the discrepancy function. It allows for emulation, calibration and prediction using complex mathematical model outputs and experimental data. See the reference: Mengyang Gu and Long Wang, 2018, Journal of Uncertainty Quantification; Mengyang Gu, Fangzheng Xie and Long Wang, 2022, Journal of Uncertainty Quantification; Mengyang Gu, Kyle Anderson and Erika McPhillips, 2023, Technometrics.
This package provides functions to complete three-dimensional rock fabric and strain analyses following the Rf Phi, Fry, and normalized Fry methods. Also allows for plotting of results and interactive 3D visualization functionality.
R implementation of Maximum Likelihood Principal Component Analysis The main idea of this package is to have an alternative way of PCA for subspace modeling that considers measurement errors. More details can be found in Peter D. Wentzell (2009) <doi:10.1016/B978-0-444-64165-6.03029-9>.
This package implements robust median-based Bayesian growth curve models that handle Missing Completely at Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR) missing-data mechanisms, and allow auxiliary variables. Models are fitted via rjags (interface to JAGS') and summarized with coda'.
Loading calls data from Ringostat API'. See <https://help.ringostat.com/knowledge-base/article/integration-with-ringostat-via-api>.
Offers a handful of useful wrapper functions which streamline the reading, analyzing, and visualizing of variant call format (vcf) files in R. This package was designed to facilitate an explicit pipeline for optimizing Stacks (Rochette et al., 2019) (<doi:10.1111/mec.15253>) parameters during de novo (without a reference genome) assembly and variant calling of restriction-enzyme associated DNA sequence (RADseq) data. The pipeline implemented here is based on the 2017 paper "Lost in Parameter Space" (Paris et al., 2017) (<doi:10.1111/2041-210X.12775>) which establishes clear recommendations for optimizing the parameters m', M', and n', during the process of assembling loci.