Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a version of the Titanic survival data tailored for people analytics demonstrations and practice. While another package, titanic', reproduces the Kaggle competition files with minimal preprocessing, tidytitanic combines the train and test datasets into the single dataset, passengers', for exploration and summary across all passengers. It also extracts personal identifiersâ such as first names, last names, and titles from the raw name field, enabling demographic analysis. The passengers data does not cover the crew, but this package also provides the more bare-bones, crew-containing datasets tidy_titanic and flat_titanic based on the Titanic data set from datasets for further exploration. This human-centered data package is designed to support exploratory data analysis, feature engineering, and pedagogical use cases.
This package provides a general regression neural network (GRNN) is a variant of a Radial Basis Function Network characterized by a fast single-pass learning. tsfgrnn allows you to forecast time series using a GRNN model Francisco Martinez et al. (2019) <doi:10.1007/978-3-030-20521-8_17> and Francisco Martinez et al. (2022) <doi:10.1016/j.neucom.2021.12.028>. When the forecasting horizon is higher than 1, two multi-step ahead forecasting strategies can be used. The model built is autoregressive, that is, it is only based on the observations of the time series. You can consult and plot how the prediction was done. It is also possible to assess the forecasting accuracy of the model using rolling origin evaluation.
There is a wide range of R packages created for data visualization, but still, there was no simple and easily accessible way to create clean and transparent charts - up to now. The tidycharts package enables the user to generate charts compliant with International Business Communication Standards ('IBCS'). It means unified bar widths, colors, chart sizes, etc. Creating homogeneous reports has never been that easy! Additionally, users can apply semantic notation to indicate different data scenarios (plan, budget, forecast). What's more, it is possible to customize the charts by creating a personal color pallet with the possibility of switching to default options after the experiments. We wanted the package to be helpful in writing reports, so we also made joining charts in a one, clear image possible. All charts are generated in SVG format and can be shown in the RStudio viewer pane or exported to HTML output of knitr'/'markdown'.
Include the Twitter status widgets in HTML pages created using R markdown. The package uses the Twitter javascript APIs to embed in your document Twitter cards associated to specific statuses. The main targets are regular HTML pages or dashboards.
Census and administrative data in South Korea are a basic source of quantitative and mixed-methods research for social and urban scientists. This package provides a sf (Pebesma et al., 2024 <doi:10.32614/CRAN.package.sf>) based standardized workflow based on direct open API access to the major census and administrative data sources and pre-generated files in South Korea.
This package provides three estimators for tensor response regression (TRR) and tensor predictor regression (TPR) models with tensor envelope structure. The three types of estimation approaches are generic and can be applied to any envelope estimation problems. The full Grassmannian (FG) optimization is often associated with likelihood-based estimation but requires heavy computation and good initialization; the one-directional optimization approaches (1D and ECD algorithms) are faster, stable and does not require carefully chosen initial values; the SIMPLS-type is motivated by the partial least squares regression and is computationally the least expensive. For details of TRR, see Li L, Zhang X (2017) <doi:10.1080/01621459.2016.1193022>. For details of TPR, see Zhang X, Li L (2017) <doi:10.1080/00401706.2016.1272495>. For details of 1D algorithm, see Cook RD, Zhang X (2016) <doi:10.1080/10618600.2015.1029577>. For details of ECD algorithm, see Cook RD, Zhang X (2018) <doi:10.5705/ss.202016.0037>. For more details of the package, see Zeng J, Wang W, Zhang X (2021) <doi:10.18637/jss.v099.i12>.
Defines a graphics device and functions for graphical output in terminal emulators that support graphical output. Currently terminals that support the Terminal Graphics Protocol (<https://sw.kovidgoyal.net/kitty/graphics-protocol/>) and terminal supporting Sixel (<https://en.wikipedia.org/wiki/Sixel>) are supported.
This package provides functions to design phase 1 trials using an isotonic regression based design incorporating time-to-event information. Simulation and design functions are available, which incorporate information about followup and DLTs, and apply isotonic regression to devise estimates of DLT probability.
The model, developed at the Vienna University of Technology, is a lumped conceptual rainfall-runoff model, following the structure of the HBV model. The model can also be run in a semi-distributed fashion and with dual representation of soil layer. The model runs on a daily or shorter time step and consists of a snow routine, a soil moisture routine and a flow routing routine. See Parajka, J., R. Merz, G. Bloeschl (2007) <DOI:10.1002/hyp.6253> Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments, Hydrological Processes, 21, 435-446.
Longitudinal data offers insights into population changes over time but often requires a flexible structure, especially with varying follow-up intervals. Panel data is one way to store such records, though it adds complexity to analysis. The tvtools package for R simplifies exploring and analyzing panel data.
Fit species distribution models (SDMs) using the tidymodels framework, which provides a standardised interface to define models and process their outputs. tidysdm expands tidymodels by providing methods for spatial objects, models and metrics specific to SDMs, as well as a number of specialised functions to process occurrences for contemporary and palaeo datasets. The full functionalities of the package are described in Leonardi et al. (2024) <doi:10.1111/2041-210X.14406>.
The Tanaka method enhances the representation of topography on a map using shaded contour lines. In this simplified implementation of the method, north-west white contours represent illuminated topography and south-east black contours represent shaded topography. See Tanaka (1950) <doi:10.2307/211219>.
Interface to the API for TreeBASE <http://treebase.org> from R. TreeBASE is a repository of user-submitted phylogenetic trees (of species, population, or genes) and the data used to create them.
Randomizing exams with LaTeX'. If you can compile your main document with LaTeX', the program should be able to compile the randomized versions without much extra effort when creating the document.
Facilitates development and application of two-regression algorithms for research-grade wearable devices. It provides an easy way for users to access previously-developed algorithms, and also to develop their own. Initial motivation came from Hibbing PR, LaMunion SR, Kaplan AS, & Crouter SE (2018) <doi:10.1249/MSS.0000000000001532>. However, other algorithms are now supported. Please see the associated references in the package documentation for full details of the algorithms that are supported.
It is a versatile tool for predicting time series data using Long Short-Term Memory (LSTM) models. It is specifically designed to handle time series with an exogenous variable, allowing users to denote whether data was available for a particular period or not. The package encompasses various functionalities, including hyperparameter tuning, custom loss function support, model evaluation, and one-step-ahead forecasting. With an emphasis on ease of use and flexibility, it empowers users to explore, evaluate, and deploy LSTM models for accurate time series predictions and forecasting in diverse applications. More details can be found in Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.
Formula-based user-interfaces to specific transformation models implemented in package mlt (<DOI:10.32614/CRAN.package.mlt>, <DOI:10.32614/CRAN.package.mlt.docreg>). Available models include Cox models, some parametric survival models (Weibull, etc.), models for ordered categorical variables, normal and non-normal (Box-Cox type) linear models, and continuous outcome logistic regression (Lohse et al., 2017, <DOI:10.12688/f1000research.12934.1>). The underlying theory is described in Hothorn et al. (2018) <DOI:10.1111/sjos.12291>. An extension to transformation models for clustered data is provided (Barbanti and Hothorn, 2022, <DOI:10.1093/biostatistics/kxac048>) and a tutorial explains applications in survival analysis (Siegfried et al., 2025, <DOI:10.48550/arXiv.2402.06428>). Multivariate conditional transformation models (Klein et al, 2022, <DOI:10.1111/sjos.12501>) and shift-scale transformation models (Siegfried et al, 2023, <DOI:10.1080/00031305.2023.2203177>) can be fitted as well. The package contains an implementation of a doubly robust score test, described in Kook et al. (2024, <DOI:10.1080/01621459.2024.2395588>).
This package provides a tidy interface for integrating large language model (LLM) APIs such as Claude', Openai', Gemini','Mistral and local models via Ollama into R workflows. The package supports text and media-based interactions, interactive message history, batch request APIs, and a tidy, pipeline-oriented interface for streamlined integration into data workflows. Web services are available at <https://www.anthropic.com>, <https://openai.com>, <https://aistudio.google.com/>, <https://mistral.ai/> and <https://ollama.com>.
Translation of logit models coefficients into percentages, following Deauvieau (2010) <doi:10.1177/0759106309352586>.
An integrated suite of tools for creating, maintaining, and reusing FAIR (Findable, Accessible, Interoperable, Reusable) theories. Designed to support transparent and collaborative theory development, the package enables users to formalize theories, track changes with version control, assess pre-empirical coherence, and derive testable hypotheses. Aligning with open science principles and workflows, theorytools facilitates the systematic improvement of theoretical frameworks and enhances their discoverability and usability.
Deciphering hierarchy of agents exhibiting observable dominance events is a crucial problem in several disciplines, in particular in behavioural analysis of social animals, but also in social sciences and game theory. This package implements an inference approach based on graph theory, namely to extract the optimal acyclic subset of a weighted graph of dominance; this allows for hierarchy estimation through topological sorting. The package also contains infrastructure to investigate partially defined hierarchies and hierarchy dynamics.
Return the first four moments, estimation of parameters and sample of the TSMSN distributions (Skew Normal, Skew t, Skew Slash or Skew Contaminated Normal).
This package provides tools for specifying time series regression models.
Forecasting of long memory time series in presence of structural break by using TSF algorithm by Papailias and Dias (2015) <doi:10.1016/j.ijforecast.2015.01.006>.