Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs nonparametric estimation in mixture cure models when the cure status is partially known. For details, see Safari et al (2021) <doi:10.1002/bimj.202100156>, Safari et al (2022) <doi:10.1177/09622802221115880> and Safari et al (2023) <doi:10.1007/s10985-023-09591-x>.
Analysis functions to quantify inputs importance in neural network models. Functions are available for calculating and plotting the inputs importance and obtaining the activation function of each neuron layer and its derivatives. The importance of a given input is defined as the distribution of the derivatives of the output with respect to that input in each training data point <doi:10.18637/jss.v102.i07>.
Create and manipulate numeric list ('nlist') objects. An nlist is an S3 list of uniquely named numeric objects. An numeric object is an integer or double vector, matrix or array. An nlists object is a S3 class list of nlist objects with the same names, dimensionalities and typeofs. Numeric list objects are of interest because they are the raw data inputs for analytic engines such as JAGS', STAN and TMB'. Numeric lists objects, which are useful for storing multiple realizations of of simulated data sets, can be converted to coda::mcmc and coda::mcmc.list objects.
This package provides computational tools for nonlinear longitudinal models, in particular the intrinsically nonlinear models, in four scenarios: (1) univariate longitudinal processes with growth factors, with or without covariates including time-invariant covariates (TICs) and time-varying covariates (TVCs); (2) multivariate longitudinal processes that facilitate the assessment of correlation or causation between multiple longitudinal variables; (3) multiple-group models for scenarios (1) and (2) to evaluate differences among manifested groups, and (4) longitudinal mixture models for scenarios (1) and (2), with an assumption that trajectories are from multiple latent classes. The methods implemented are introduced in Jin Liu (2023) <arXiv:2302.03237v2>.
This package provides a variety of functions for the best known and most innovative approaches to nonparametric boundary estimation. The selected methods are concerned with empirical, smoothed, unrestricted as well as constrained fits under both separate and multiple shape constraints. They cover robust approaches to outliers as well as data envelopment techniques based on piecewise polynomials, splines, local linear fitting, extreme values and kernel smoothing. The package also seamlessly allows for Monte Carlo comparisons among these different estimation methods. Its use is illustrated via a number of empirical applications and simulated examples.
This package provides a nested menu widget for usage in Shiny applications. This is useful for hierarchical choices (e.g. continent, country, city).
Adding updates (version or bullet points) to the NEWS.md file.
An implementation of the Nonparametric Predictive Inference approach in R. It provides tools for quantifying uncertainty via lower and upper probabilities. It includes useful functions for pairwise and multiple comparisons: comparing two groups with and without terminated tails, selecting the best group, selecting the subset of best groups, selecting the subset including the best group.
NNS (Nonlinear Nonparametric Statistics) leverages partial moments â the fundamental elements of variance that asymptotically approximate the area under f(x) â to provide a robust foundation for nonlinear analysis while maintaining linear equivalences. NNS delivers a comprehensive suite of advanced statistical techniques, including: Numerical integration, Numerical differentiation, Clustering, Correlation, Dependence, Causal analysis, ANOVA, Regression, Classification, Seasonality, Autoregressive modeling, Normalization, Stochastic dominance and Advanced Monte Carlo sampling. All routines based on: Viole, F. and Nawrocki, D. (2013), Nonlinear Nonparametric Statistics: Using Partial Moments (ISBN: 1490523995).
Basic implementation of a Gibbs sampler for a Chinese Restaurant Process along with some visual aids to help understand how the sampling works. This is developed as part of a postgraduate school project for an Advanced Bayesian Nonparametric course. It is inspired by Tamara Broderick's presentation on Nonparametric Bayesian statistics given at the Simons institute.
User-friendly functions for extracting a data table (row for each match, column for each group) from non-tabular text data using regular expressions, and for melting columns that match a regular expression. Patterns are defined using a readable syntax that makes it easy to build complex patterns in terms of simpler, re-usable sub-patterns. Named R arguments are translated to column names in the output; capture groups without names are used internally in order to provide a standard interface to three regular expression C libraries ('PCRE', RE2', ICU'). Output can also include numeric columns via user-specified type conversion functions.
Given any graph, the node2vec algorithm can learn continuous feature representations for the nodes, which can then be used for various downstream machine learning tasks.The techniques are detailed in the paper "node2vec: Scalable Feature Learning for Networks" by Aditya Grover, Jure Leskovec(2016),available at <arXiv:1607.00653>.
Macros to generate nimble code from a concise syntax. Included are macros for generating linear modeling code using a formula-based syntax and for building for() loops. For more details review the nimble manual: <https://r-nimble.org/html_manual/cha-writing-models.html#subsec:macros>.
LaBB-CAT is a web-based language corpus management system developed by the New Zealand Institute of Language, Brain and Behaviour (NZILBB) - see <https://labbcat.canterbury.ac.nz>. This package defines functions for accessing corpus data in a LaBB-CAT instance. You must have at least version 20230818.1400 of LaBB-CAT to use this package. For more information about LaBB-CAT', see Robert Fromont and Jennifer Hay (2008) <doi:10.3366/E1749503208000142> or Robert Fromont (2017) <doi:10.1016/j.csl.2017.01.004>.
Segregation is a network-level property such that edges between predefined groups of vertices are relatively less likely. Network homophily is a individual-level tendency to form relations with people who are similar on some attribute (e.g. gender, music taste, social status, etc.). In general homophily leads to segregation, but segregation might arise without homophily. This package implements descriptive indices measuring homophily/segregation. It is a computational companion to Bojanowski & Corten (2014) <doi:10.1016/j.socnet.2014.04.001>.
This package contains the following 5 nonparametric hypothesis tests: The Sign Test, The 2 Sample Median Test, Miller's Jackknife Procedure, Cochran's Q Test, & The Stuart-Maxwell Test.
Simulation, estimation, prediction procedure, and model identification methods for nonlinear time series analysis, including threshold autoregressive models, Markov-switching models, convolutional functional autoregressive models, nonlinearity tests, Kalman filters and various sequential Monte Carlo methods. More examples and details about this package can be found in the book "Nonlinear Time Series Analysis" by Ruey S. Tsay and Rong Chen, John Wiley & Sons, 2018 (ISBN: 978-1-119-26407-1).
Includes five particle filtering algorithms for use with state space models in the nimble system: Auxiliary', Bootstrap', Ensemble Kalman filter', Iterated Filtering 2', and Liu-West', as described in Michaud et al. (2021), <doi:10.18637/jss.v100.i03>. A full User Manual is available at <https://r-nimble.org>.
This package provides number-theoretic functions for factorization, prime numbers, twin primes, primitive roots, modular logarithm and inverses, extended GCD, Farey series and continued fractions. Includes Legendre and Jacobi symbols, some divisor functions, Euler's Phi function, etc.
Facilitates nonresponse bias analysis (NRBA) for survey data. Such data may arise from a complex sampling design with features such as stratification, clustering, or unequal probabilities of selection. Multiple types of analyses may be conducted: comparisons of response rates across subgroups; comparisons of estimates before and after weighting adjustments; comparisons of sample-based estimates to external population totals; tests of systematic differences in covariate means between respondents and full samples; tests of independence between response status and covariates; and modeling of outcomes and response status as a function of covariates. Extensive documentation and references are provided for each type of analysis. Krenzke, Van de Kerckhove, and Mohadjer (2005) <http://www.asasrms.org/Proceedings/y2005/files/JSM2005-000572.pdf> and Lohr and Riddles (2016) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2016002/article/14677-eng.pdf?st=q7PyNsGR> provide an overview of the methods implemented in this package.
The Bayesian hierarchical model named antigen-T cell interaction estimation is to estimate the history of the immune pressure on the evolution of the tumor clones.The model is based on the estimation result from Andrew Roth (2014) <doi:10.1038/nmeth.2883>.
Support the book: Wu CO and Tian X (2018). Nonparametric Models for Longitudinal Data. Chapman & Hall/CRC (to appear); and provide fit for using global and local smoothing methods for the conditional-mean and conditional-distribution based models with longitudinal Data.
Datasets for testing nonlinear regression routines.
This package provides tools for drawing Statistical Process Control (SPC) charts. This package supports the NHS Making Data Count programme, and allows users to draw XmR charts, use change points and apply rules with summary indicators for when rules are breached.