Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Manipulate data through memory-mapped files, as vectors, matrices or arrays. Basic arithmetic functions are implemented, but currently no matrix arithmetic. Can write and read descriptor files for compatibility with the bigmemory package.
This package implements hierarchical clustering methods (single linkage, complete linkage, average linkage, and centroid linkage) with stepwise printing and dendrograms for didactic purposes.
This package provides a function to assess and test for heterogeneity in the utility of a surrogate marker with respect to a baseline covariate. The main function can be used for either a continuous or discrete baseline covariate. More details will be available in the future in: Parast, L., Cai, T., Tian L (2021). "Testing for Heterogeneity in the Utility of a Surrogate Marker." Biometrics, In press.
This package provides a non-parametric test founded upon the principles of the Kolmogorov-Smirnov (KS) test, referred to as the KS Predictive Accuracy (KSPA) test. The KSPA test is able to serve two distinct purposes. Initially, the test seeks to determine whether there exists a statistically significant difference between the distribution of forecast errors, and secondly it exploits the principles of stochastic dominance to determine whether the forecasts with the lower error also reports a stochastically smaller error than forecasts from a competing model, and thereby enables distinguishing between the predictive accuracy of forecasts. KSPA test has been described in : Hassani and Silva (2015) <doi:10.3390/econometrics3030590>.
Multivariate conditional and marginal densities, moments, cumulative distribution functions as well as binary choice and sample selection models based on Hermite polynomial approximation which was proposed and described by A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>.
This package provides functions for the management and treatment of hydrology and meteorology time-series stored in a Sqlite data base.
There are two interesting games in this package, one is 2048 games(for windows), using up and down to control the direction until there is a 2048 figure. And the other is what to eat today',preparing for people who choose difficulties, including most of the delicious Cantonese cuisine.
The Tweedie lasso model implements an iteratively reweighed least square (IRLS) strategy that incorporates a blockwise majorization decent (BMD) method, for efficiently computing solution paths of the (grouped) lasso and the (grouped) elastic net methods.
In the framework of Symbolic Data Analysis, a relatively new approach to the statistical analysis of multi-valued data, we consider histogram-valued data, i.e., data described by univariate histograms. The methods and the basic statistics for histogram-valued data are mainly based on the L2 Wasserstein metric between distributions, i.e., the Euclidean metric between quantile functions. The package contains unsupervised classification techniques, least square regression and tools for histogram-valued data and for histogram time series. An introducing paper is Irpino A. Verde R. (2015) <doi: 10.1007/s11634-014-0176-4>.
An RStudio Addin for Hippie Expand (AKA Hippie Code Completion or Cyclic Expand Word). This type of completion searches for matching tokens within the user's current source editor file, regardless of file type. By searching only within the current source file, hippie offers a fast way to identify and insert completions that appear around the user's cursor.
Automatic open data acquisition from resources of IGN ('Institut National de Information Geographique et forestiere') (<https://www.ign.fr/>). Available datasets include various types of raster and vector data, such as digital elevation models, state borders, spatial databases, cadastral parcels, and more. happign also provide access to API Carto (<https://apicarto.ign.fr/api/doc/>).
Distribution free heteroscedastic tests for functional data. The following tests are included in this package: test of no main treatment or contrast effect and no simple treatment effect given in Wang, Higgins, and Blasi (2010) <doi:10.1016/j.spl.2009.11.016>, no main time effect, and no interaction effect based on original observations given in Wang and Akritas (2010a) <doi:10.1080/10485250903171621> and tests based on ranks given in Wang and Akritas (2010b) <doi:10.1016/j.jmva.2010.03.012>.
Ridge regression provide biased estimators of the regression parameters with lower variance. The HDBRR ("High Dimensional Bayesian Ridge Regression") function fits Bayesian Ridge regression without MCMC, this one uses the SVD or QR decomposition for the posterior computation.
This package provides a stand-alone function that generates a user specified number of random datasets and computes eigenvalues using the random datasets (i.e., implements Horn's [1965, Psychometrika] parallel analysis <doi:10.1007/BF02289447>). Users then compare the resulting eigenvalues (the mean or the specified percentile) from the random datasets (i.e., eigenvalues resulting from noise) to the eigenvalues generated with the user's data. Can be used for both principal components analysis (PCA) and common/exploratory factor analysis (EFA). The output table shows how large eigenvalues can be as a result of merely using randomly generated datasets. If the user's own dataset has actual eigenvalues greater than the corresponding eigenvalues, that lends support to retain that factor/component. In other words, if the i(th) eigenvalue from the actual data was larger than the percentile of the (i)th eigenvalue generated using randomly generated data, empirical support is provided to retain that factor/component. Horn, J. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 32, 179-185.
To test the homogeneity of stratum effects in stratified paired binary data.
An implementation of high-probability lower bounds for the total variance distance as introduced in Michel & Naef & Meinshausen (2020) <arXiv:2005.06006>. An estimated lower-bound (with high-probability) on the total variation distance between two probability distributions from which samples are observed can be obtained with the function HPLB.
This package provides tools for computing HUM (Hypervolume Under the Manifold) value to estimate features ability to discriminate the class labels, visualizing the ROC curve for two or three class labels (Natalia Novoselova, Cristina Della Beffa, Junxi Wang, Jialiang Li, Frank Pessler, Frank Klawonn (2014) <doi:10.1093/bioinformatics/btu086>).
Build better balance in causal inference models. halfmoon helps you assess propensity score models for balance between groups using metrics like standardized mean differences and visualization techniques like mirrored histograms. halfmoon supports both weighting and matching techniques.
Returns a Hasse diagram of the layout structure (Bate and Chatfield (2016)) <doi:10.1080/00224065.2016.11918173> or the restricted layout structure (Bate and Chatfield (2016)) <doi:10.1080/00224065.2016.11918174> of an experimental design.
Harriet was Charles Darwin's pet tortoise (possibly). harrietr implements some function to manipulate distance matrices and phylogenetic trees to make it easier to plot with ggplot2 and to manipulate using tidyverse tools.
This package provides a shiny interface for a free, open-source managerial accounting-like system for health care practices. This package allows health care administrators to project revenue with monthly adjustments and procedure-specific boosts up to a 3-year period. Granular data (patient-level) to aggregated data (department- or hospital-level) can all be used as valid inputs provided historical volume and revenue data is available. For more details on managerial accounting techniques, see Brewer et al. (2015, ISBN:9780078025792).
Penalized regression for generalized linear models for measurement error problems (aka. errors-in-variables). The package contains a version of the lasso (L1-penalization) which corrects for measurement error (Sorensen et al. (2015) <doi:10.5705/ss.2013.180>). It also contains an implementation of the Generalized Matrix Uncertainty Selector, which is a version the (Generalized) Dantzig Selector for the case of measurement error (Sorensen et al. (2018) <doi:10.1080/10618600.2018.1425626>).
Health Calculator helps to find different parameters like basal metabolic rate, body mass index etc. related to fitness and health of a person.
The HistData package provides a collection of small data sets that are interesting and important in the history of statistics and data visualization. The goal of the package is to make these available, both for instructional use and for historical research. Some of these present interesting challenges for graphics or analysis in R.