Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions and data files to help CE Public-Use Microdata (PUMD) users calculate annual estimated expenditure means, standard errors, and quantiles according to the methods used by the CE with PUMD. For more information on the CE please visit <https://www.bls.gov/cex>. For further reading on CE estimate calculations please see the CE Calculation section of the U.S. Bureau of Labor Statistics (BLS) Handbook of Methods at <https://www.bls.gov/opub/hom/cex/calculation.htm>. For further information about CE PUMD please visit <https://www.bls.gov/cex/pumd.htm>.
Estimation of Markov generator matrices from discrete-time observations. The implemented approaches comprise diagonal and weighted adjustment of matrix logarithm based candidate solutions as in Israel (2001) <doi:10.1111/1467-9965.00114> as well as a quasi-optimization approach. Moreover, the expectation-maximization algorithm and the Gibbs sampling approach of Bladt and Sorensen (2005) <doi:10.1111/j.1467-9868.2005.00508.x> are included.
An interactive application for working with contingency Tables. The application has a template for solving contingency table problems like chisquare test of independence,association plot between two categorical variables. Runtime examples are provided in the package function as well as at <https://jarvisatharva.shinyapps.io/CategoricalDataAnalysis/>.
Cure dependent censoring regression models for long-term survival multivariate data. These models are based on extensions of the frailty models, capable to accommodating the cure fraction and the dependence between failure and censoring times, with Weibull and piecewise exponential marginal distributions. Theoretical details regarding the models implemented in the package can be found in Schneider et al. (2022) <doi:10.1007/s10651-022-00549-0>.
An implementation of efficiency first conformal prediction (EFCP) and validity first conformal prediction (VFCP) that demonstrates both validity (coverage guarantee) and efficiency (width guarantee). To learn how to use it, check the vignettes for a quick tutorial. The package is based on the work by Yang Y., Kuchibhotla A.,(2021) <arxiv:2104.13871>.
Sample size estimation in cluster (group) randomized trials. Contains traditional power-based methods, empirical smoothing (Rotondi and Donner, 2009), and updated meta-analysis techniques (Rotondi and Donner, 2012).
Manipulate and analyze 3-D structural geometry of Protein Data Bank (PDB) files.
Analyzes spatial transcriptomic data using cells-by-genes and cell location matrices to find gene pairs that coordinate their expression between spatially adjacent cells. It enables quantitative analysis and graphical assessment of these cross-expression patterns. See Sarwar et al. (2025) <doi:10.1101/2024.09.17.613579> and <https://github.com/gillislab/CrossExpression/> for more details.
Method to implement some newly developed methods for the estimation of the conditional survival function. See Meira-Machado, Sestelo and Goncalves (2016) <doi:10.1002/bimj.201500038>.
Built upon popular R packages such as ggstatsplot and ARTool', this collection offers a wide array of tools for simplifying reproducible analyses, generating high-quality visualizations, and producing APA'-compliant outputs. The primary goal of this package is to significantly reduce repetitive coding efforts, allowing you to focus on interpreting results. Whether you're dealing with ANOVA assumptions, reporting effect sizes, or creating publication-ready visualizations, this package makes these tasks easier.
This package provides a daily counts of the Coronavirus (COVID19) cases by districts and country. Data source: Epidemiological Unit, Ministry of Health, Sri Lanka <https://www.epid.gov.lk/web/>.
Incorporates colour gradients from the cpt-city web archive available at <http://seaviewsensing.com/pub/cpt-city/>.
This package provides tools for estimation and clustering of spherical data, seamlessly integrated with the flexmix package. Includes the necessary M-step implementations for both Poisson Kernel-Based Distribution (PKBD) and spherical Cauchy distribution. Additionally, the package provides random number generators for PKBD and spherical Cauchy distribution. Methods are based on Golzy M., Markatou M. (2020) <doi:10.1080/10618600.2020.1740713>, Kato S., McCullagh P. (2020) <doi:10.3150/20-bej1222> and Sablica L., Hornik K., Leydold J. (2023) <doi:10.1214/23-ejs2149>.
Cuddy-Della valle index gives the degree of instability present in the data by accommodating the effect of a trend. The adjusted R squared value of the best fitted model is chosen. The index is obtained by multiplying the coefficient of variation with square root of one minus the adjusted R-squared value. This package has been developed using concept of Shankar et al. (2022)<doi:10.3389/fsufs.2023.1208898>.
CemCO algorithm, a model-based (Gaussian) clustering algorithm that removes/minimizes the effects of undesirable covariates during the clustering process both in cluster centroids and in cluster covariance structures (Relvas C. & Fujita A., (2020) <arXiv:2004.02333>).
This package contains 3 maps. 1) US States 2) US Counties 3) Countries of the world.
Fork of calendR R package to generate ready to print calendars with ggplot2 (see <https://r-coder.com/calendar-plot-r/>) with additional features (backwards compatible). calendRio provides a calendR() function that serves as a drop-in replacement for the upstream version but allows for additional parameters unlocking extra functionality.
This package provides a wrapper for the Clockify API <https://docs.clockify.me/>, making it possible to query, insert and update time keeping data.
This package implements Cragg-Donald (1993) <doi:10.1017/S0266466600007519> and Stock and Yogo (2005) <doi:10.1017/CBO9780511614491.006> tests for weak instruments in R.
Extend cxxfunction by saving the dynamic shared objects for reusing across R sessions.
Compare C-statistics (concordance statistics) between two survival models, using either bootstrap resampling (Harrell's C) or Uno's C with perturbation-resampling (from the survC1 package). Returns confidence intervals and a p-value for the difference in C-statistics. Useful for evaluating and comparing predictive performance of survival models. Methods implemented for Uno's C are described in Uno et al. (2011) <doi:10.1002/sim.4154>.
Biclustering, row clustering and column clustering using the proportional odds model (POM), ordered stereotype model (OSM) or binary model for ordinal categorical data. Fernández, D., Arnold, R., Pledger, S., Liu, I., & Costilla, R. (2019) <doi:10.1007/s11634-018-0324-3>.
Fast categorization of items based on external code data identified by regular expressions. A typical use case considers patient with medically coded data, such as codes from the International Classification of Diseases ('ICD') or the Anatomic Therapeutic Chemical ('ATC') classification system. Functions of the package relies on a triad of objects: (1) case data with unit id:s and possible dates of interest; (2) external code data for corresponding units in (1) and with optional dates of interest and; (3) a classification scheme ('classcodes object) with regular expressions to identify and categorize relevant codes from (2). It is easy to introduce new classification schemes ('classcodes objects) or to use default schemes included in the package. Use cases includes patient categorization based on comorbidity indices such as Charlson', Elixhauser', RxRisk V', or the comorbidity-polypharmacy score (CPS), as well as adverse events after hip and knee replacement surgery.
Enables simultaneous statistical inference for the accuracy of multiple classifiers in multiple subgroups (strata). For instance, allows to perform multiple comparisons in diagnostic accuracy studies with co-primary endpoints sensitivity and specificity (Westphal M, Zapf A. Statistical inference for diagnostic test accuracy studies with multiple comparisons. Statistical Methods in Medical Research. 2024;0(0). <doi:10.1177/09622802241236933>).