Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides simplified access to the data from the Catalog of Theses and Dissertations of the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES, <https://catalogodeteses.capes.gov.br>) for the years 1987 through 2022. The dataset includes variables such as Higher Education Institution (institution), Area of Concentration (area), Graduate Program Name (program_name), Type of Work (type), Language of Work (language), Author Identification (author), Abstract (abstract), Advisor Identification (advisor), Development Region (region), State (state).
This comprehensive framework for periodic time series modeling is designated as "CLIC" (The LIC for Distributed Cosine Regression Analysis) analysis. It is predicated on the assumption that the underlying data exhibits complex periodic structures beyond simple harmonic components. The philosophy of the method is articulated in Guo G. (2020) <doi:10.1080/02664763.2022.2053949>.
Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes.
Various statistical methods and models which are typically used for the estimation of outstanding claims reserves in general insurance, including those to estimate the claims development result as required under Solvency II.
The implemented functions allow the query, download, and import of remotely-stored and version-controlled data items. The inherent meta-database maps data files and import code to programming classes and allows access to these items via files deposited in public repositories. The purpose of the project is to increase reproducibility and establish version tracking of results from (paleo)environmental/ecological research.
This package provides functions and data to estimate causal dose response functions given continuous, ordinal, or binary treatments. A description of the methods is given in Galagate (2016) <https://drum.lib.umd.edu/handle/1903/18170>.
Includes functions for the analysis of circular data using distributions based on Nonnegative Trigonometric Sums (NNTS). The package includes functions for calculation of densities and distributions, for the estimation of parameters, for plotting and more.
Probability mass function, distribution function, quantile function and random generation for the Complex Triparametric Pearson (CTP) and Complex Biparametric Pearson (CBP) distributions developed by Rodriguez-Avi et al (2003) <doi:10.1007/s00362-002-0134-7>, Rodriguez-Avi et al (2004) <doi:10.1007/BF02778271> and Olmo-Jimenez et al (2018) <doi:10.1080/00949655.2018.1482897>. The package also contains maximum-likelihood fitting functions for these models.
Interacting with binary files can be difficult because R's types are a subset of what is generally supported by C'. This package provides a suite of functions for reading and writing binary data (with files, connections, and raw vectors) using C type descriptions. These functions convert data between C types and R types while checking for values outside the type limits, NA values, etc.
Compute Chinese capital stocks in provinces level, based on Zhang (2008) <DOI:10.1080/14765280802028302>.
Builds co-occurrence matrices based on spatial raster data. It includes creation of weighted co-occurrence matrices (wecoma) and integrated co-occurrence matrices (incoma; Vadivel et al. (2007) <doi:10.1016/j.patrec.2007.01.004>).
Implementation of two-dimensional (2D) correlation analysis based on the Fourier-transformation approach described by Isao Noda (I. Noda (1993) <DOI:10.1366/0003702934067694>). Additionally there are two plot functions for the resulting correlation matrix: The first one creates colored 2D plots, while the second one generates 3D plots.
Subset and download data from EU Copernicus Climate Data Service: <https://cds.climate.copernicus.eu/>. Import information about the Earth's past, present and future climate from Copernicus into R without the need of external software.
With this package you can run ConMET locally in R. ConMET is an R-shiny application that facilitates performing and evaluating confirmatory factor analyses (CFAs) and is useful for running and reporting typical measurement models in applied psychology and management journals. ConMET automatically creates, compares and summarizes CFA models. Most common fit indices (E.g., CFI and SRMR) are put in an overview table. ConMET also allows to test for common method variance. The application is particularly useful for teaching and instruction of measurement issues in survey research. The application uses the lavaan package (Rosseel, 2012) to run CFAs.
Classification method described in Dancik et al (2011) <doi:10.1158/0008-5472.CAN-11-2427> that classifies a sample according to the class with the maximum mean (or any other function of) correlation between the test and training samples with known classes.
This package provides measures of effect sizes for summarized continuous variables as well as diagnostic accuracy statistics for 2x2 table data. Includes functions for Cohen's d, robust effect size, Cohen's q, partial eta-squared, coefficient of variation, odds ratio, likelihood ratios, sensitivity, specificity, positive and negative predictive values, Youden index, number needed to treat, number needed to diagnose, and predictive summary index.
Process Digital Cover Photography images of tree canopies to get canopy attributes like Foliage Cover and Leaf Area Index. Detailed description of the methods in Chianucci et al. (2022) <doi:10.1007/s00468-018-1666-3>.
Fast application of Continuous Wavelet Transformation ('CWT') on time series with special attention to spectroscopy. It is written using data.table and C++ language and in some functions it is possible to use parallel processing to speed-up the computation over samples. Currently, only the second derivative of a Gaussian wavelet function is implemented.
Generate multivariate color palettes to represent two-dimensional or three-dimensional data in graphics (in contrast to standard color palettes that represent just one variable). You tell colors3d how to map color space onto your data, and it gives you a color for each data point. You can then use these colors to make plots in base R', ggplot2', or other graphics frameworks.
Collective matrix factorization (a.k.a. multi-view or multi-way factorization, Singh, Gordon, (2008) <doi:10.1145/1401890.1401969>) tries to approximate a (potentially very sparse or having many missing values) matrix X as the product of two low-dimensional matrices, optionally aided with secondary information matrices about rows and/or columns of X', which are also factorized using the same latent components. The intended usage is for recommender systems, dimensionality reduction, and missing value imputation. Implements extensions of the original model (Cortes, (2018) <arXiv:1809.00366>) and can produce different factorizations such as the weighted implicit-feedback model (Hu, Koren, Volinsky, (2008) <doi:10.1109/ICDM.2008.22>), the weighted-lambda-regularization model, (Zhou, Wilkinson, Schreiber, Pan, (2008) <doi:10.1007/978-3-540-68880-8_32>), or the enhanced model with implicit features (Rendle, Zhang, Koren, (2019) <arXiv:1905.01395>), with or without side information. Can use gradient-based procedures or alternating-least squares procedures (Koren, Bell, Volinsky, (2009) <doi:10.1109/MC.2009.263>), with either a Cholesky solver, a faster conjugate gradient solver (Takacs, Pilaszy, Tikk, (2011) <doi:10.1145/2043932.2043987>), or a non-negative coordinate descent solver (Franc, Hlavac, Navara, (2005) <doi:10.1007/11556121_50>), providing efficient methods for sparse and dense data, and mixtures thereof. Supports L1 and L2 regularization in the main models, offers alternative most-popular and content-based models, and implements functionality for cold-start recommendations and imputation of 2D data.
This package implements the regression approach of Zuber and Strimmer (2011) "High-dimensional regression and variable selection using CAR scores" SAGMB 10: 34, <DOI:10.2202/1544-6115.1730>. CAR scores measure the correlation between the response and the Mahalanobis-decorrelated predictors. The squared CAR score is a natural measure of variable importance and provides a canonical ordering of variables. This package provides functions for estimating CAR scores, for variable selection using CAR scores, and for estimating corresponding regression coefficients. Both shrinkage as well as empirical estimators are available.
Connect and pull data from the CJA API, which powers CJA Workspace <https://github.com/AdobeDocs/cja-apis>. The package was developed with the analyst in mind and will continue to be developed with the guiding principles of iterative, repeatable, timely analysis. New features are actively being developed and we value your feedback and contribution to the process.
This package provides API access to the Government of Canada Vehicle Recalls Database <https://tc.api.canada.ca/en/detail?api=VRDB> used by the Defect Investigations and Recalls Division for vehicles, tires, and child car seats. The API wrapper provides access to recall summary information searched using make, model, and year range, as well as detailed recall information searched using recall number.
Explore calcium (Ca) and phosphate (Pi) homeostasis with two novel Shiny apps, building upon on a previously published mathematical model written in C, to ensure efficient computations. The underlying model is accessible here <https://pubmed.ncbi.nlm.nih.gov/28747359/)>. The first application explores the fundamentals of Ca-Pi homeostasis, while the second provides interactive case studies for in-depth exploration of the topic, thereby seeking to foster student engagement and an integrative understanding of Ca-Pi regulation.