Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements lasso and ridge regression for dichotomised outcomes (<doi:10.1080/02664763.2023.2233057>), i.e., numerical outcomes that were transformed to binary outcomes. Such artificial binary outcomes indicate whether an underlying measurement is greater than a threshold.
This package provides function declarations and inline function definitions that facilitate communication between R and the Armadillo C++ library for linear algebra and scientific computing. This implementation is detailed in Vargas Sepulveda and Schneider Malamud (2024) <doi:10.1016/j.softx.2025.102087>.
To improve estimation accuracy and stability in statistical modeling, catalytic prior distributions are employed, integrating observed data with synthetic data generated from a simpler model's predictive distribution. This approach enhances model robustness, stability, and flexibility in complex data scenarios. The catalytic prior distributions are introduced by Huang et al. (2020, <doi:10.1073/pnas.1920913117>), Li and Huang (2023, <doi:10.48550/arXiv.2312.01411>).
Estimate one or two cutpoints of a metric or ordinal-scaled variable in the multivariable context of survival data or time-to-event data. Visualise the cutpoint estimation process using contour plots, index plots, and spline plots. It is also possible to estimate cutpoints based on the assumption of a U-shaped or inverted U-shaped relationship between the predictor and the hazard ratio. Govindarajulu, U., and Tarpey, T. (2022) <doi:10.1080/02664763.2020.1846690>.
Auto, Cross and Multi-dimensional recurrence quantification analysis. Different methods for computing recurrence, cross vs. multidimensional or profile iti.e., only looking at the diagonal recurrent points, as well as functions for optimization and plotting are proposed. in-depth measures of the whole cross-recurrence plot, Please refer to Coco and others (2021) <doi:10.32614/RJ-2021-062>, Coco and Dale (2014) <doi:10.3389/fpsyg.2014.00510> and Wallot (2018) <doi: 10.1080/00273171.2018.1512846> for further details about the method.
This package provides a set of functions that helps you to generate descriptive statistics based on the variable types.
Simple, fast, and automatic encodings for category data using a data.table backend. Most of the methods are an implementation of "Sufficient Representation for Categorical Variables" by Johannemann, Hadad, Athey, Wager (2019) <arXiv:1908.09874>, particularly their mean, sparse principal component analysis, low rank representation, and multinomial logit encodings.
Formal psychological models of categorization and learning, independently-replicated data sets against which to test them, and simulation archives.
Circular drift-diffusion model for continuous reports.
This package provides tools to process CBASS-derived PAM data efficiently. Minimal requirements are PAM-based photosynthetic efficiency data (or data from any other continuous variable that changes with temperature, e.g. relative bleaching scores) from 4 coral samples (nubbins) subjected to 4 temperature profiles of at least 2 colonies from 1 coral species from 1 site. Please refer to the following CBASS (Coral Bleaching Automated Stress System) papers for in-depth information regarding CBASS acute thermal stress assays, experimental design considerations, and ED5/ED50/ED95 thermal parameters: Nicolas R. Evensen et al. (2023) <doi:10.1002/lom3.10555> Christian R. Voolstra et al. (2020) <doi:10.1111/gcb.15148> Christian R. Voolstra et al. (2025) <doi:10.1146/annurev-marine-032223-024511>.
Evaluates the probability density function (PDF), cumulative distribution function (CDF), quantile function (QF), random numbers and maximum likelihood estimates (MLEs) of well-known complementary binomial-G, complementary negative binomial-G and complementary geometric-G families of distributions taking baseline models such as exponential, extended exponential, Weibull, extended Weibull, Fisk, Lomax, Burr-XII and Burr-X. The functions also allow computing the goodness-of-fit measures namely the Akaike-information-criterion (AIC), the Bayesian-information-criterion (BIC), the minimum value of the negative log-likelihood (-2L) function, Anderson-Darling (A) test, Cramer-Von-Mises (W) test, Kolmogorov-Smirnov test, P-value and convergence status. Moreover, some commonly used data sets from the fields of actuarial, reliability, and medical science are also provided. Related works include: a) Tahir, M. H., & Cordeiro, G. M. (2016). Compounding of distributions: a survey and new generalized classes. Journal of Statistical Distributions and Applications, 3, 1-35. <doi:10.1186/s40488-016-0052-1>.
Indicators and measures by country and time describe what happens at economic and social levels. This package provides functions to calculate several measures of convergence after imputing missing values. The automated downloading of Eurostat data, followed by the production of country fiches and indicator fiches, makes possible to produce automated reports. The Eurofound report (<doi:10.2806/68012>) "Upward convergence in the EU: Concepts, measurements and indicators", 2018, is a detailed presentation of convergence.
This package creates ggplot2 Cumulative Residual (CURE) plots to check the goodness-of-fit of a count model; or the tables to create a customized version. A dataset of crashes in Washington state is available for illustrative purposes.
An interactive document on the topic of confusion matrix analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://predanalyticssessions1.shinyapps.io/ConfusionMatrixShiny/>.
Fetches the Cornell Lab of Ornithology Open Tree of Life (clootl) tree in a specified taxonomy. Optionally prune it to a given set of study taxa. Provide a recommended citation list for the studies that informed the extracted tree. Tree generated as described in McTavish et al. (2024) <doi:10.1101/2024.05.20.595017>.
This package contains the Correlates of State Policy Project dataset (+ codebook) assembled by Marty P. Jordan and Matt Grossmann (2020) <http://ippsr.msu.edu/public-policy/correlates-state-policy> used by the cspp package. The Correlates data contains over 3000 variables across more than 100 years that pertain to state politics and policy in the United States.
This package provides functions to append confidence intervals, prediction intervals, and other quantities of interest to data frames. All appended quantities are for the response variable, after conditioning on the model and covariates. This package has a data frame first syntax that allows for easy piping. Currently supported models include (log-) linear, (log-) linear mixed, generalized linear models, generalized linear mixed models, and accelerated failure time models.
Helping biologists to choose the most suitable approach to link their research to conservation. After answering few questions on the data available, geographic and taxonomic scope, conserveR ranks existing methods for conservation prioritization and systematic conservation planning by suitability. The methods data base of conserveR contains 133 methods for conservation prioritization based on a systematic review of > 12,000 scientific publications from the fields of spatial conservation prioritization, systematic conservation planning, biogeography and ecology.
Connect to the California Irrigation Management Information System (CIMIS) Web API. See the CIMIS main page <https://cimis.water.ca.gov> and web API documentation <https://et.water.ca.gov> for more information.
Composite likelihood parameter estimate and asymptotic covariance matrix are calculated for the spatial ordinal data with replications, where spatial ordinal response with covariate and both spatial exponential covariance within subject and independent and identically distributed measurement error. Parameter estimation can be performed by either solving the gradient function or maximizing composite log-likelihood. Parametric bootstrapping is used to estimate the Godambe information matrix and hence the asymptotic standard error and covariance matrix with parallel processing option. Moreover, the proposed surrogate residual, which extends the results of Liu and Zhang (2017) <doi: 10.1080/01621459.2017.1292915>, can act as a useful tool for model diagnostics.
High dimensional discriminant analysis with compositional data is performed. The compositional data are first transformed using the alpha-transformation of Tsagris M., Preston S. and Wood A.T.A. (2011) <doi:10.48550/arXiv.1106.1451>, and then the High Dimensional Discriminant Analysis (HDDA) algorithm of Bouveyron C. Girard S. and Schmid C. (2007) <doi:10.1080/03610920701271095> is applied.
Contrast trees represent a new approach for assessing the accuracy of many types of machine learning estimates that are not amenable to standard (cross) validation methods; see "Contrast trees and distribution boosting", Jerome H. Friedman (2020) <doi:10.1073/pnas.1921562117>. In situations where inaccuracies are detected, boosted contrast trees can often improve performance. Functions are provided to to build such trees in addition to a special case, distribution boosting, an assumption free method for estimating the full probability distribution of an outcome variable given any set of joint input predictor variable values.
Allows for the easy computation of complexity: the proportion of the parameter space in line with the hypothesis by chance. The package comes with a Shiny application in which the calculations can be conducted as well.
Price credit default swaps using C code from the International Swaps and Derivatives Association CDS Standard Model. See <https://www.cdsmodel.com/cdsmodel/documentation.html> for more information about the model and <https://www.cdsmodel.com/cdsmodel/cds-disclaimer.html> for license details for the C code.