Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs one-way tests in independent groups designs including homoscedastic and heteroscedastic tests. These are one-way analysis of variance (ANOVA), Welch's heteroscedastic F test, Welch's heteroscedastic F test with trimmed means and Winsorized variances, Brown-Forsythe test, Alexander-Govern test, James second order test, Kruskal-Wallis test, Scott-Smith test, Box F test, Johansen F test, Generalized tests equivalent to Parametric Bootstrap and Fiducial tests, Alvandi's F test, Alvandi's generalized p-value, approximate F test, B square test, Cochran test, Weerahandi's generalized F test, modified Brown-Forsythe test, adjusted Welch's heteroscedastic F test, Welch-Aspin test, Permutation F test. The package performs pairwise comparisons and graphical approaches. Also, the package includes Student's t test, Welch's t test and Mann-Whitney U test for two samples. Moreover, it assesses variance homogeneity and normality of data in each group via tests and plots (Dag et al., 2018, <https://journal.r-project.org/archive/2018/RJ-2018-022/RJ-2018-022.pdf>).
Fast, optimal, and reproducible clustering algorithms for circular, periodic, or framed data. The algorithms introduced here are based on a core algorithm for optimal framed clustering the authors have developed (Debnath & Song 2021) <doi:10.1109/TCBB.2021.3077573>. The runtime of these algorithms is O(K N log^2 N), where K is the number of clusters and N is the number of circular data points. On a desktop computer using a single processor core, millions of data points can be grouped into a few clusters within seconds. One can apply the algorithms to characterize events along circular DNA molecules, circular RNA molecules, and circular genomes of bacteria, chloroplast, and mitochondria. One can also cluster climate data along any given longitude or latitude. Periodic data clustering can be formulated as circular clustering. The algorithms offer a general high-performance solution to circular, periodic, or framed data clustering.
Oblique random survival forests incorporate linear combinations of input variables into random survival forests (Ishwaran, 2008 <DOI:10.1214/08-AOAS169>). Regularized Cox proportional hazard models (Simon, 2016 <DOI:10.18637/jss.v039.i05>) are used to identify optimal linear combinations of input variables.
This package provides a model-agnostic framework for selecting dataset-specific imputation methods for missing values in numerical data related to pain. Lotsch J, Ultsch A (2025) "A model-agnostic framework for dataset-specific selection of missing value imputation methods in pain-related numerical data" Canadian Journal of Pain (in minor revision).
Intended to assist in the choice of the sampling strategy to implement in a survey.
Shiny Application to visualize Olympic Data. From 1896 to 2016. Even Winter Olympics events are included. Data is from Kaggle at <https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results>.
This package provides tools for the analysis of land use and cover (LUC) time series. It includes support for loading spatiotemporal raster data and synthesized spatial plotting. Several LUC change (LUCC) metrics in regular or irregular time intervals can be extracted and visualized through one- and multistep sankey and chord diagrams. A complete intensity analysis according to Aldwaik and Pontius (2012) <doi:10.1016/j.landurbplan.2012.02.010> is implemented, including tools for the generation of standardized multilevel output graphics.
Package for estimating the parameters of a nonlinear function using iterated linearization via Taylor series. Method is based on KubÃ¡Ä ek (2000) ISBN: 80-244-0093-6. The algorithm is a generalization of the procedure given in Köning, R., Wimmer, G. and Witkovský, V. (2014) <doi:10.1088/0957-0233/25/11/115001>.
This package provides definitions of core classes and methods used by analytic pipelines that query the OMOP (Observational Medical Outcomes Partnership) common data model.
Helps to create ggplot2 charts in the style used by the National Road Safety Observatory (ONSV). The package includes functions to customize ggplot2 objects with new theme and colors.
Perform a Bayesian estimation of the ordinal exploratory Higher-order General Diagnostic Model (OHOEGDM) for Polytomous Data described by Culpepper, S. A. and Balamuta, J. J. (2021) <doi:10.1080/00273171.2021.1985949>.
This package implements methods to fit a parametric Bayesian multi-state model to tumor response data. The model can be used to sample from the predictive distribution to impute missing data and calculate probability of success for custom decision criteria in early clinical trials during an ongoing trial. The inference is implemented using stan'.
Additive proportional odds model for ordinal data using Laplace P-splines. The combination of Laplace approximations and P-splines enable fast and flexible inference in a Bayesian framework. Specific approximations are proposed to account for the asymmetry in the marginal posterior distributions of non-penalized parameters. For more details, see Lambert and Gressani (2023) <doi:10.1177/1471082X231181173> ; Preprint: <arXiv:2210.01668>).
This package provides rectangular elements that can be dragged and resized over plots in shiny apps. This may be useful in applications where users need to mark regions on the plot for further input or processing.
An interface to the Apache OpenNLP tools (version 1.5.3). The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text written in Java. It supports the most common NLP tasks, such as tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and coreference resolution. See <https://opennlp.apache.org/> for more information.
This package provides general purpose tools for helping users to implement steepest gradient descent methods for function optimization; for details see Ruder (2016) <arXiv:1609.04747v2>. Currently, the Steepest 2-Groups Gradient Descent and the Adaptive Moment Estimation (Adam) are the methods implemented. Other methods will be implemented in the future.
This package implements Bayesian data analyses of balanced repeatability and reproducibility studies with ordinal measurements. Model fitting is based on MCMC posterior sampling with rjags'. Function ordinalRR() directly carries out the model fitting, and this function has the flexibility to allow the user to specify key aspects of the model, e.g., fixed versus random effects. Functions for preprocessing data and for the numerical and graphical display of a fitted model are also provided. There are also functions for displaying the model at fixed (user-specified) parameters and for simulating a hypothetical data set at a fixed (user-specified) set of parameters for a random-effects rater population. For additional technical details, refer to Culp, Ryan, Chen, and Hamada (2018) and cite this Technometrics paper when referencing any aspect of this work. The demo of this package reproduces results from the Technometrics paper.
Primarily devoted to implementing the Univariate Bootstrap (as well as the Traditional Bootstrap). In addition there are multiple functions for DeFries-Fulker behavioral genetics models. The univariate bootstrapping functions, DeFries-Fulker functions, regression and traditional bootstrapping functions form the original core. Additional features may come online later, however this software is a work in progress. For more information about univariate bootstrapping see: Lee and Rodgers (1998) and Beasley et al (2007) <doi:10.1037/1082-989X.12.4.414>.
Useful functions for one-sample (individual level data) Mendelian randomization and instrumental variable analyses. The package includes implementations of; the Sanderson and Windmeijer (2016) <doi:10.1016/j.jeconom.2015.06.004> conditional F-statistic, the multiplicative structural mean model Hernán and Robins (2006) <doi:10.1097/01.ede.0000222409.00878.37>, and two-stage predictor substitution and two-stage residual inclusion estimators explained by Terza et al. (2008) <doi:10.1016/j.jhealeco.2007.09.009>.
It implements functions for simulation and estimation of the ordinal latent block model (OLBM), as described in Corneli, Bouveyron and Latouche (2019).
Expands quoted language by recursively replacing any symbol that points to quoted language with the language it points to. The recursive process continues until only symbols that point to non-language objects remain. The resulting quoted language can then be evaluated normally. This differs from the traditional quote'/'eval pattern because it resolves intermediate language objects that would interfere with evaluation.
Supports the definition of sets of properties on objects. Observers can listen to changes on individual properties or the set as a whole. The properties are meant to be fully self-describing. In support of this, there is a framework for defining enumerated types, as well as other bounded types, as S4 classes.
Ensemble functions for outlier/anomaly detection. There is a new ensemble method proposed using Item Response Theory. Existing outlier ensemble methods from Schubert et al (2012) <doi:10.1137/1.9781611972825.90>, Chiang et al (2017) <doi:10.1016/j.jal.2016.12.002> and Aggarwal and Sathe (2015) <doi:10.1145/2830544.2830549> are also included.
This package implements the out-of-treatment testing from Kuelpmann and Kuzmics (2020) <doi:10.2139/ssrn.3441675> based on the Vuong Test introduced in Vuong (1989) <doi:10.2307/1912557>. Out-of treatment testing allows for a direct, pairwise likelihood comparison of theories, calibrated with pre-existing data.