Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is a simple R package that allows to measure the stated preferences using traditional conjoint analysis method.
This package implements a basis function or functional data analysis framework for several techniques of multivariate analysis in continuous-time setting. Specifically, we introduced continuous-time analogues of several classical techniques of multivariate analysis, such as principal component analysis, canonical correlation analysis, Fisher linear discriminant analysis, K-means clustering, and so on. Details are in Biplab Paul, Philip T. Reiss and Erjia Cui (2023) "Continuous-time multivariate analysis" <doi:10.48550/arXiv.2307.09404>.
Doubly robust methods for evaluating surrogate markers as outlined in: Agniel D, Hejblum BP, Thiebaut R & Parast L (2022). "Doubly robust evaluation of high-dimensional surrogate markers", Biostatistics <doi:10.1093/biostatistics/kxac020>. You can use these methods to determine how much of the overall treatment effect is explained by a (possibly high-dimensional) set of surrogate markers.
CIFTI files contain brain imaging data in "grayordinates," which represent the gray matter as cortical surface vertices (left and right) and subcortical voxels (cerebellum, basal ganglia, and other deep gray matter). ciftiTools provides a unified environment for reading, writing, visualizing and manipulating CIFTI-format data. It supports the "dscalar," "dlabel," and "dtseries" intents. Grayordinate data is read in as a "xifti" object, which is structured for convenient access to the data and metadata, and includes support for surface geometry files to enable spatially-dependent functionality such as static or interactive visualizations and smoothing.
Several authors have proposed methods for constructing simultaneous confidence intervals for multinomial proportions. The package implements seven classical approachesâ Wilson, Quesenberry and Hurst, Goodman, Wald (with and without continuity correction), Fitzpatrick and Scott, and Sison and Glazâ along with Bayesian methods based on Dirichlet models. Both equal and unequal Dirichlet priors are supported, providing a broad framework for inference, data analysis, and sensitivity evaluation.
Generate and analyse crossover designs from combinatorial or search algorithms as well as from literature and a GUI to access them.
To calculate the AQI (Air Quality Index) from pollutant concentration data. O3, PM2.5, PM10, CO, SO2, and NO2 are available currently. The method can be referenced at Environmental Protection Agency, United States as follows: EPA (2016) <https://www3.epa.gov/airnow/aqi-technical-assistance-document-may2016.pdf>.
This package provides a matrix of agreement patterns and counts for record pairs is the input for the procedure. An EM algorithm is used to impute plausible values for missing record pairs. A second EM algorithm, incorporating possible correlations between per-field agreement, is used to estimate posterior probabilities that each pair is a true match - i.e. constitutes the same individual.
Predicts categorical or continuous outcomes while concentrating on a number of key points. These are Cross-validation, Accuracy, Regression and Rule of Ten or "one in ten rule" (CARRoT), and, in addition to it R-squared statistics, prior knowledge on the dataset etc. It performs the cross-validation specified number of times by partitioning the input into training and test set and fitting linear/multinomial/binary regression models to the training set. All regression models satisfying chosen constraints are fitted and the ones with the best predictive power are given as an output. Best predictive power is understood as highest accuracy in case of binary/multinomial outcomes, smallest absolute and relative errors in case of continuous outcomes. For binary case there is also an option of finding a regression model which gives the highest AUROC (Area Under Receiver Operating Curve) value. The option of parallel toolbox is also available. Methods are described in Peduzzi et al. (1996) <doi:10.1016/S0895-4356(96)00236-3> , Rhemtulla et al. (2012) <doi:10.1037/a0029315>, Riley et al. (2018) <doi:10.1002/sim.7993>, Riley et al. (2019) <doi:10.1002/sim.7992>.
Builds co-occurrence matrices based on spatial raster data. It includes creation of weighted co-occurrence matrices (wecoma) and integrated co-occurrence matrices (incoma; Vadivel et al. (2007) <doi:10.1016/j.patrec.2007.01.004>).
Generate a candidate code list for the Observational Medical Outcomes Partnership (OMOP) common data model based on string matching. For a given search strategy, a candidate code list will be returned.
This package provides a curated list of copepod-fish ecological interaction records. It contains the taxonomy of the copepod and the fish and the publication from which the information was obtained. This database contains only marine and brackish water fish species. It excludes fish species that inhabit only freshwater.
Several causal effects are measured using least squares regressions and basis function approximations. Backward and forward selection methods based on different criteria are used to select the basis functions.
Compute the certainty equivalents and premium risks as tools for risk-efficiency analysis. For more technical information, please refer to: Hardaker, Richardson, Lien, & Schumann (2004) <doi:10.1111/j.1467-8489.2004.00239.x>, and Richardson, & Outlaw (2008) <doi:10.2495/RISK080231>.
Bindings to qpdf': qpdf (<https://qpdf.sourceforge.io/>) is a an open-source PDF rendering library that allows to conduct content-preserving transformations of PDF files such as split, combine, and compress PDF files.
This package provides a statistical framework and computational procedure for identifying the sub-populations within a tumor, determining the mutation profiles of each subpopulation, and inferring the tumor's phylogenetic history. The input are variant allele frequencies (VAFs) of somatic single nucleotide alterations (SNAs) along with allele-specific coverage ratios between the tumor and matched normal sample for somatic copy number alterations (CNAs). These quantities can be directly taken from the output of existing software. Canopy provides a general mathematical framework for pooling data across samples and sites to infer the underlying parameters. For SNAs that fall within CNA regions, Canopy infers their temporal ordering and resolves their phase. When there are multiple evolutionary configurations consistent with the data, Canopy outputs all configurations along with their confidence assessment.
Set of tools to compute metrics and indices for climate analysis. The package provides functions to compute extreme indices, evaluate the agreement between models and combine theses models into an ensemble. Multi-model time series of climate indices can be computed either after averaging the 2-D fields from different models provided they share a common grid or by combining time series computed on the model native grid. Indices can be assigned weights and/or combined to construct new indices. The package makes use of some of the methods described in: N. Manubens et al. (2018) <doi:10.1016/j.envsoft.2018.01.018>.
Single objective optimization using a CMA-ES.
This package provides a feasible framework for mutation analysis and reverse transcription polymerase chain reaction (RT-PCR) assay evaluation of COVID-19, including mutation profile visualization, statistics and mutation ratio of each assay. The mutation ratio is conducive to evaluating the coverage of RT-PCR assays in large-sized samples. Mercatelli, D. and Giorgi, F. M. (2020) <doi:10.20944/preprints202004.0529.v1>.
Helps users standardise data to the Darwin Core Standard, a global data standard to store, document, and share biodiversity data like species occurrence records. The package provides tools to manipulate data to conform with, and check validity against, the Darwin Core Standard. Using corella allows users to verify that their data can be used to build Darwin Core Archives using the galaxias package.
Create CUSUM (cumulative sum) statistics from a vector or dataframe. Also create single or faceted CUSUM control charts, with or without control limits. Accepts vector, dataframe, tibble or data.table inputs.
Calculates and visualises cumulative percent decay curves, which are typically calculated from metagenomic taxonomic profiles. These can be used to estimate the level of expected endogenous taxa at different abundance levels retrieved from metagenomic samples, when comparing to samples of known sampling site or source. Method described in Fellows Yates, J. A. et. al. (2021) Proceedings of the National Academy of Sciences USA <doi:10.1073/pnas.2021655118>.
Computes marginal conformal p-values using conformal prediction in binary classification tasks. Conformal prediction is a framework that augments machine learning algorithms with a measure of uncertainty, in the form of prediction regions that attain a user-specified level of confidence. This package specifically focuses on providing conformal p-values that can be used to assess the confidence of the classification predictions. For more details, see Tyagi and Guo (2023) <https://proceedings.mlr.press/v204/tyagi23a.html>.
Nonparametric two-sample procedure for comparing survival quantiles.