Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains functions for reading raw data in ImaGene TXT format obtained from Exiqon miRCURY LNA arrays, annotating them with appropriate GAL files, and normalizing them using a spike-in probe-based method. Other platforms and data formats are also supported.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was E\_coli\_Asv2\_probe\_tab.
Exon-intron split analysis (EISA) uses ordinary RNA-seq data to measure changes in mature RNA and pre-mRNA reads across different experimental conditions to quantify transcriptional and post-transcriptional regulation of gene expression. For details see Gaidatzis et al., Nat Biotechnol 2015. doi: 10.1038/nbt.3269. eisaR implements the major steps of EISA in R.
Exposes an annotation databases generated from several sources by exposing these as EpiTxDb object. Generated for Homo sapiens/hg38.
This package imports the epiviz visualization JavaScript app for genomic data interactive visualization. The epivizrServer package is used to provide a web server running completely within R. This standalone version allows to browse arbitrary genomes through genome annotations provided by Bioconductor packages.
This package provides a workflow for the use of EaSIeR tool, developed to assess patients likelihood to respond to ICB therapies providing just the patients RNA-seq data as input. We integrate RNA-seq data with different types of prior knowledge to extract quantitative descriptors of the tumor microenvironment from several points of view, including composition of the immune repertoire, and activity of intra- and extra-cellular communications. Then, we use multi-task machine learning trained in TCGA data to identify how these descriptors can simultaneously predict several state-of-the-art hallmarks of anti-cancer immune response. In this way we derive cancer-specific models and identify cancer-specific systems biomarkers of immune response. These biomarkers have been experimentally validated in the literature and the performance of EaSIeR predictions has been validated using independent datasets form four different cancer types with patients treated with anti-PD1 or anti-PDL1 therapy.
Gene regulatory networks model the underlying gene regulation hierarchies that drive gene expression and observed phenotypes. Epiregulon infers TF activity in single cells by constructing a gene regulatory network (regulons). This is achieved through integration of scATAC-seq and scRNA-seq data and incorporation of public bulk TF ChIP-seq data. Links between regulatory elements and their target genes are established by computing correlations between chromatin accessibility and gene expressions.
The epistack package main objective is the visualizations of stacks of genomic tracks (such as, but not restricted to, ChIP-seq, ATAC-seq, DNA methyation or genomic conservation data) centered at genomic regions of interest. epistack needs three different inputs: 1) a genomic score objects, such as ChIP-seq coverage or DNA methylation values, provided as a `GRanges` (easily obtained from `bigwig` or `bam` files). 2) a list of feature of interest, such as peaks or transcription start sites, provided as a `GRanges` (easily obtained from `gtf` or `bed` files). 3) a score to sort the features, such as peak height or gene expression value.
This package provides reference data required for ewce. Expression Weighted Celltype Enrichment (EWCE) is used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies. The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses.
The ERSSA package takes user supplied RNA-seq differential expression dataset and calculates the number of differentially expressed genes at varying biological replicate levels. This allows the user to determine, without relying on any a priori assumptions, whether sufficient differential detection has been acheived with their RNA-seq dataset.
The EMDomics algorithm is used to perform a supervised multi-class analysis to measure the magnitude and statistical significance of observed continuous genomics data between groups. Usually the data will be gene expression values from array-based or sequence-based experiments, but data from other types of experiments can also be analyzed (e.g. copy number variation). Traditional methods like Significance Analysis of Microarrays (SAM) and Linear Models for Microarray Data (LIMMA) use significance tests based on summary statistics (mean and standard deviation) of the distributions. This approach lacks power to identify expression differences between groups that show high levels of intra-group heterogeneity. The Earth Mover's Distance (EMD) algorithm instead computes the "work" needed to transform one distribution into another, thus providing a metric of the overall difference in shape between two distributions. Permutation of sample labels is used to generate q-values for the observed EMD scores. This package also incorporates the Komolgorov-Smirnov (K-S) test and the Cramer von Mises test (CVM), which are both common distribution comparison tests.
This package implements the Ensemble of Gene Set Enrichment Analyses (EGSEA) method for gene set testing. EGSEA algorithm utilizes the analysis results of twelve prominent GSE algorithms in the literature to calculate collective significance scores for each gene set.
Calculates the coverage of high-throughput short-reads against a genome of reference and summarizes it per feature of interest (e.g. exon, gene, transcript). The data can be normalized as RPKM or by the DESeq or edgeR package.
This packages provides a single function, readEDS. This is a low-level utility for reading in Alevin EDS format into R. This function is not designed for end-users but instead the package is predominantly for simplifying package dependency graph for other Bioconductor packages.
An S4 class for facilitating the automated creation of rmarkdown files inside other packages/software even without knowing rmarkdown language. Best if implemented in functions as "recursive" style programming.
This package provides pre-processed RNA-seq data where the epithelial to mesenchymal transition was induced on cell lines. These data come from three publications Cursons et al. (2015), Cursons etl al. (2018) and Foroutan et al. (2017). In each of these publications, EMT was induces across multiple cell lines following treatment by TGFb among other stimulants. This data will be useful in determining the regulatory programs modified in order to achieve an EMT. Data were processed by the Davis laboratory in the Bioinformatics division at WEHI.
This package provides a quasi-simulation based approach to performing power analysis for EWAS (Epigenome-wide association studies) with continuous or binary outcomes. EpipwR relies on empirical EWAS datasets to determine power at specific sample sizes while keeping computational cost low. EpipwR can be run with a variety of standard statistical tests, controlling for either a false discovery rate or a family-wise type I error rate.
Access to internal data required for the functional performance of easier package and exemplary bladder cancer dataset with both processed RNA-seq data and information on response to ICB therapy generated by Mariathasan et al. "TGF-B attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells", published in Nature, 2018 [doi:10.1038/nature25501](https://doi.org/10.1038/nature25501). The data is made available via [`IMvigor210CoreBiologies`](http://research-pub.gene.com/IMvigor210CoreBiologies/) package under the CC-BY license.
Experiment objects such as the SummarizedExperiment or SingleCellExperiment are data containers for one or more matrix-like assays along with the associated row and column data. Often only a subset of the original data is needed for down-stream analysis. For example, filtering out poor quality samples will require excluding some columns before analysis. The ExperimentSubset object is a container to efficiently manage different subsets of the same data without having to make separate objects for each new subset.
The package includes some statistical outlier detection methods for epimutations detection in DNA methylation data. The methods included in the package are MANOVA, Multivariate linear models, isolation forest, robust mahalanobis distance, quantile and beta. The methods compare a case sample with a suspected disease against a reference panel (composed of healthy individuals) to identify epimutations in the given case sample. It also contains functions to annotate and visualize the identified epimutations.
EDIRquery provides a tool to search for genes of interest within the Exome Database of Interspersed Repeats (EDIR). A gene name is a required input, and users can additionally specify repeat sequence lengths, minimum and maximum distance between sequences, and whether to allow a 1-bp mismatch. Outputs include a summary of results by repeat length, as well as a dataframe of query results. Example data provided includes a subset of the data for the gene GAA (ENSG00000171298). To query the full database requires providing a path to the downloaded database files as a parameter.
ELMER is designed to use DNA methylation and gene expression from a large number of samples to infere regulatory element landscape and transcription factor network in primary tissue.
Given a sample data table and a design formula, ExploreModelMatrix generates an interactive application for exploration of the resulting design matrix. This can be helpful for interpreting model coefficients and constructing appropriate contrasts in (generalized) linear models. Static visualizations can also be generated.
This package provides objects to manage WebSocket connections to epiviz apps. Other epivizr package use this infrastructure.