Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Provide data generation and estimation tools for the truncated positive normal (tpn) model discussed in Gomez, Olmos, Varela and Bolfarine (2018) <doi:10.1007/s11766-018-3354-x>, the slash tpn distribution discussed in Gomez, Gallardo and Santoro (2021) <doi:10.3390/sym13112164>, the bimodal tpn distribution discussed in Gomez et al. (2022) <doi:10.3390/sym14040665>, the flexible tpn model <doi:10.3390/math11214431> and the unit tpn distribution <doi:10.1016/j.chemolab.2025.105322>.
Estimation of the survivor average causal effect under outcomes truncated by death, which requires the existence of a substitution variable. It can be applied to both experimental and observational data.
This package provides a screening process utilizing training and testing samples to filter out uninformative DNA methylation sites. Surrogate variables (SVs) of DNA methylation are included in the filtering process to explain unknown factor effects. This package also provides two screening functions for screening high-dimensional predictors when the events are rare. The firth method is called Rare-Screening which employs a repeated random sampling with replacement and using linear modeling with Bayes adjustment. The Second method is called Firth-ttScreening which uses ttScreening method with additional Firth correction term in the maximum likelihood for the logistic regression model. These methods handle the high-dimensionality and low event rates.
Find out who maintains the packages you use in your current session or in your package library and maybe say thank you'.
Covers k-table control analysis using multivariate control charts for qualitative variables using fundamentals of multiple correspondence analysis and multiple factor analysis. The graphs can be shown in a flat or interactive way, in the same way all the outputs can be shown in an interactive shiny panel.
Matching terminal restriction fragment length polymorphism ('TRFLP') profiles between unknown samples and a database of known samples. TRAMPR facilitates analysis of many unknown profiles at once, and provides tools for working directly with electrophoresis output through to generating summaries suitable for community analyses with R's rich set of statistical functions. TRAMPR also resolves the issues of multiple TRFLP profiles within a species, and shared TRFLP profiles across species.
Parsing (R)Markdown files with numerous regular expressions can be fraught with peril, but it does not have to be this way. Converting (R)Markdown files to XML using the commonmark package allows in-memory editing via of markdown elements via XPath through the extensible R6 class called yarn'. These modified XML representations can be written to (R)Markdown documents via an xslt stylesheet which implements an extended version of GitHub'-flavoured markdown so that you can tinker to your hearts content.
This package provides a problem solving environment (PSE) for fitting separable nonlinear models to measurements arising in physics and chemistry experiments, as described by Mullen & van Stokkum (2007) <doi:10.18637/jss.v018.i03> for its use in fitting time resolved spectroscopy data, and as described by Laptenok et al. (2007) <doi:10.18637/jss.v018.i08> for its use in fitting Fluorescence Lifetime Imaging Microscopy (FLIM) data, in the study of Förster Resonance Energy Transfer (FRET). `TIMP` also serves as the computation backend for the `GloTarAn` software, a graphical user interface for the package, as described in Snellenburg et al. (2012) <doi:10.18637/jss.v049.i03>.
The functions needed to perform tight clustering Algorithm.
This package provides a collection of functions for visualizing,exploring and annotating genetic association results.Association results from multiple traits can be viewed simultaneously along with gene annotation, over the entire genome (Manhattan plot) or in the more detailed regional view.
This package provides a modular package for simulating phylogenetic trees and species traits jointly. Trees can be simulated using modular birth-death parameters (e.g. changing starting parameters or algorithm rules). Traits can be simulated in any way designed by the user. The growth of the tree and the traits can influence each other through modifiers objects providing rules for affecting each other. Finally, events can be created to modify both the tree and the traits under specific conditions ( Guillerme, 2024 <DOI:10.1111/2041-210X.14306>).
The eigenvalues of observed symmetric matrices are often of intense scientific interest. This package offers single sample tests for the eigenvalues of the population mean or the eigenvalue-multiplicity of the population mean. For k-samples, this package offers tests for equal eigenvalues between samples. Included is support for matrices with constraints common to geophysical tensors (constant trace, sum of squared eigenvalues, or both) and eigenvectors are usually considered nuisance parameters. Pivotal bootstrap methods enable these tests to have good performance for small samples (n=15 for 3x3 matrices). These methods were developed and studied by Hingee, Scealy and Wood (2026, "Nonparametric bootstrap inference for the eigenvalues of geophysical tensors", accepted by the Journal of American Statistical Association). Also available is a 2-sample test using a Gaussian orthogonal ensemble approximation and an eigenvalue-multiplicity test that assumes orthogonally-invariant covariance.
Converts coefficients, standard errors, significance stars, and goodness-of-fit statistics of statistical models into LaTeX tables or HTML tables/MS Word documents or to nicely formatted screen output for the R console for easy model comparison. A list of several models can be combined in a single table. The output is highly customizable. New model types can be easily implemented. Details can be found in Leifeld (2013), JStatSoft <doi:10.18637/jss.v055.i08>.).
This package provides a calculator for the two-dimensional clinical Disease Activity index for Psoriatic Arthritis (TwoDcDAPSA), a principal component-derived measure that complements the conventional clinical DAPSA score. The TwoDcDAPSA captures residual variation in patient-reported outcomes (pain and patient global assessment) and joint counts (swollen and tender) after adjusting for standardized cDAPSA using natural spline coefficients derived from published models. Residuals are standardized and combined with fixed principal component loadings to yield a continuous PROs-Joint Contrast (PJC) score and quartile groupings. The package applies pre-specified coefficients and loadings to new datasets but does not estimate spline models or principal components itself.
Deciphering hierarchy of agents exhibiting observable dominance events is a crucial problem in several disciplines, in particular in behavioural analysis of social animals, but also in social sciences and game theory. This package implements an inference approach based on graph theory, namely to extract the optimal acyclic subset of a weighted graph of dominance; this allows for hierarchy estimation through topological sorting. The package also contains infrastructure to investigate partially defined hierarchies and hierarchy dynamics.
Fits temperature response models to rate measurements taken at different temperatures. Etienne Low-Decarie,Tobias G. Boatman, Noah Bennett,Will Passfield,Antonio Gavalas-Olea,Philipp Siegel, Richard J. Geider (2017) <doi:10.1002/ece3.3576> .
Calculates the robust Taba linear, Taba rank (monotonic), TabWil, and TabWil rank correlations. Test statistics as well as one sided or two sided p-values are provided for all correlations. Multiple correlations and p-values can be calculated simultaneously across multiple variables. In addition, users will have the option to use the partial, semipartial, and generalized partial correlations; where the partial and semipartial correlations use linear, logistic, or Poisson regression to modify the specified variable.
This package provides functions that can be used to calculate time-dependent state and parameter sensitivities for both continuous- and discrete-time deterministic models. See Ng et al. (2023) <doi:10.1086/726143> for more information about time-dependent sensitivity analysis.
Generic methods for parameter tuning of classification algorithms using multiple scoring functions (Muessel et al. (2012), <doi:10.18637/jss.v046.i05>).
This package provides a suite of auxiliary functions that enhance time series estimation and forecasting, including a robust anomaly detection routine based on Chen and Liu (1993) <doi:10.2307/2290724> (imported and wrapped from the tsoutliers package), utilities for managing calendar and time conversions, performance metrics to assess both point forecasts and distributional predictions, advanced simulation by allowing the generation of time series componentsâ such as trend, seasonal, ARMA, irregular, and anomaliesâ in a modular fashion based on the innovations form of the state space model and a number of transformation methods including Box-Cox, Logit, Softplus-Logit and Sigmoid.
This package provides methods and tools for generating forecasts at different temporal frequencies using a hierarchical time series approach.
This package provides a set of tools for managing time-series data, with a particular emphasis on defining various frequency types such as daily and weekly. It also includes functionality for converting data between different frequencies.
Test the nullity of covariances, in a set of variables, using a simple univariate procedure. See Marques, Diago, Norouzirad, Bispo (2023) <doi:10.1002/mma.9130>.
This package provides a step-up test for genetic rare variants in a gene or in a pathway. The method determines an optimal grouping of rare variants analytically. The method has been described in Hoffmann TJ, Marini NJ, and Witte JS (2010) <doi:10.1371/journal.pone.0013584>.