Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for fitting semiparametric regression models for panel count survival data. An overview of the package can be found in Wang and Yan (2011) <doi:10.1016/j.cmpb.2010.10.005> and Chiou et al. (2018) <doi:10.1111/insr.12271>.
I provide functions to calculate Gross Primary Productivity, Net Ecosystem Production, and Ecosystem Respiration from single station diurnal Oxygen curves.
This package provides the hyphenation algorithm used for TeX'/'LaTeX and similar software, as proposed by Liang (1983, <https://tug.org/docs/liang/>). Mainly contains the function hyphen() to be used for hyphenation/syllable counting of text objects. It was originally developed for and part of the koRpus package, but later released as a separate package so it's lighter to have this particular functionality available for other packages. Support for various languages needs be added on-the-fly or by plugin packages (<https://undocumeantit.github.io/repos/>); this package does not include any language specific data. Due to some restrictions on CRAN, the full package sources are only available from the project homepage. To ask for help, report bugs, request features, or discuss the development of the package, please subscribe to the koRpus-dev mailing list (<http://korpusml.reaktanz.de>).
This package performs estimation and inference on a partially missing target outcome (e.g. gene expression in an inaccessible tissue) while borrowing information from a correlated surrogate outcome (e.g. gene expression in an accessible tissue). Rather than regarding the surrogate outcome as a proxy for the target outcome, this package jointly models the target and surrogate outcomes within a bivariate regression framework. Unobserved values of either outcome are treated as missing data. In contrast to imputation-based inference, no assumptions are required regarding the relationship between the target and surrogate outcomes. Estimation in the presence of bilateral outcome missingness is performed via an expectation conditional maximization either algorithm. In the case of unilateral target missingness, estimation is performed using an accelerated least squares procedure. A flexible association test is provided for evaluating hypotheses about the target regression parameters. For additional details, see: McCaw ZR, Gaynor SM, Sun R, Lin X: "Leveraging a surrogate outcome to improve inference on a partially missing target outcome" <doi:10.1111/biom.13629>.
This package provides a tool for producing synthetic versions of microdata containing confidential information so that they are safe to be released to users for exploratory analysis. The key objective of generating synthetic data is to replace sensitive original values with synthetic ones causing minimal distortion of the statistical information contained in the data set. Variables, which can be categorical or continuous, are synthesised one-by-one using sequential modelling. Replacements are generated by drawing from conditional distributions fitted to the original data using parametric or classification and regression trees models. Data are synthesised via the function syn() which can be largely automated, if default settings are used, or with methods defined by the user. Optional parameters can be used to influence the disclosure risk and the analytical quality of the synthesised data. For a description of the implemented method see Nowok, Raab and Dibben (2016) <doi:10.18637/jss.v074.i11>. Functions to assess identity and attribute disclosure for the original and for the synthetic data are included in the package, and their use is illustrated in a vignette on disclosure (Practical Privacy Metrics for Synthetic Data).
Surface Protein abundance Estimation using CKmeans-based clustered thresholding ('SPECK') is an unsupervised learning-based method that performs receptor abundance estimation for single cell RNA-sequencing data based on reduced rank reconstruction (RRR) and a clustered thresholding mechanism. Seurat's normalization method is described in: Hao et al., (2021) <doi:10.1016/j.cell.2021.04.048>, Stuart et al., (2019) <doi:10.1016/j.cell.2019.05.031>, Butler et al., (2018) <doi:10.1038/nbt.4096> and Satija et al., (2015) <doi:10.1038/nbt.3192>. Method for the RRR is further detailed in: Erichson et al., (2019) <doi:10.18637/jss.v089.i11> and Halko et al., (2009) <doi:10.48550/arXiv.0909.4061>. Clustering method is outlined in: Song et al., (2020) <doi:10.1093/bioinformatics/btaa613> and Wang et al., (2011) <doi:10.32614/RJ-2011-015>.
An interactive Shiny application to perform fast parameter inference on dynamical systems (described by ordinary differential equations) using gradient matching. Please see the project page for more details.
The SAVVY (Survival Analysis for AdVerse Events with VarYing Follow-Up Times) project is a consortium of academic and pharmaceutical industry partners that aims to improve the analyses of adverse event (AE) data in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events, see Stegherr, Schmoor, Beyersmann, et al. (2021) <doi:10.1186/s13063-021-05354-x>. Although statistical methodologies have advanced, in AE analyses often the incidence proportion, the incidence density or a non-parametric Kaplan-Meier estimator are used, which either ignore censoring or competing events. This package contains functions to easily conduct the proposed improved AE analyses.
Collect your data on digital marketing campaigns from Snapchat Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
Manage a collection/library of R source packages. Discover, document, load, test source packages. Enable to use those packages as if they were actually installed. Quickly reload only what is needed on source code change. Run tests and checks in parallel.
This package provides functions to estimate kernel-smoothed spatial and spatio-temporal densities and relative risk functions, and perform subsequent inference. Methodological details can be found in the accompanying tutorial: Davies et al. (2018) <DOI:10.1002/sim.7577>.
Calculates and plots the SiZer map for scatterplot data. A SiZer map is a way of examining when the p-th derivative of a scatterplot-smoother is significantly negative, possibly zero or significantly positive across a range of smoothing bandwidths.
Includes all the datasets of Sampling: Design and Analysis (3rd edition by Sharon Lohr) in R format and additional functions for analyzing and graphing probability samples.
Evolutionary reconstruction based on substitutions and insertion-deletion (indels) analyses in a distance-based framework as described in Muñoz-Pajares (2013) <doi:10.1111/2041-210X.12118>.
Read in SAS Data ('.sas7bdat Files) into Apache Spark from R. Apache Spark is an open source cluster computing framework available at <http://spark.apache.org>. This R package uses the spark-sas7bdat Spark package (<https://spark-packages.org/package/saurfang/spark-sas7bdat>) to import and process SAS data in parallel using Spark'. Hereby allowing to execute dplyr statements in parallel on top of SAS data.
This package provides a series of tools for analyzing Systems Factorial Technology data. This includes functions for plotting and statistically testing capacity coefficient functions and survivor interaction contrast functions. Houpt, Blaha, McIntire, Havig, and Townsend (2013) <doi:10.3758/s13428-013-0377-3> provide a basic introduction to Systems Factorial Technology along with examples using the sft R package.
Algorithm to estimate the Sobol indices using a non-parametric fit of the regression curve. The bandwidth is estimated using bootstrap to reduce the finite-sample bias. The package is based on the paper Solà s, M. (2018) <arXiv:1803.03333>.
An htmlwidget of the human body that allows you to hide/show and assign colors to 79 different body parts. The human widget is an htmlwidget', so it works in Quarto documents, R Markdown documents, or any other HTML medium. It also functions as an input/output widget in a shiny app.
This package provides a modification of the preventive vaccine efficacy trial design of Gilbert, Grove et al. (2011, Statistical Communications in Infectious Diseases) is implemented, with application generally to individual-randomized clinical trials with multiple active treatment groups and a shared control group, and a study endpoint that is a time-to-event endpoint subject to right-censoring. The design accounts for the issues that the efficacy of the treatment/vaccine groups may take time to accrue while the multiple treatment administrations/vaccinations are given; there is interest in assessing the durability of treatment efficacy over time; and group sequential monitoring of each treatment group for potential harm, non-efficacy/efficacy futility, and high efficacy is warranted. The design divides the trial into two stages of time periods, where each treatment is first evaluated for efficacy in the first stage of follow-up, and, if and only if it shows significant treatment efficacy in stage one, it is evaluated for longer-term durability of efficacy in stage two. The package produces plots and tables describing operating characteristics of a specified design including an unconditional power for intention-to-treat and per-protocol/as-treated analyses; trial duration; probabilities of the different possible trial monitoring outcomes (e.g., stopping early for non-efficacy); unconditional power for comparing treatment efficacies; and distributions of numbers of endpoint events occurring after the treatments/vaccinations are given, useful as input parameters for the design of studies of the association of biomarkers with a clinical outcome (surrogate endpoint problem). The code can be used for a single active treatment versus control design and for a single-stage design.
This package provides a simple function that anonymises a list of variables in a consistent way: anonymised factors are not recycled and the same original levels receive the same anonymised factor even if located in different datasets.
Fits group-regularized generalized linear models (GLMs) using the spike-and-slab group lasso (SSGL) prior of Bai et al. (2022) <doi:10.1080/01621459.2020.1765784> and extended to GLMs by Bai (2023) <doi:10.48550/arXiv.2007.07021>. This package supports fitting the SSGL model for the following GLMs with group sparsity: Gaussian linear regression, binary logistic regression, and Poisson regression.
Graphical and computational methods that can be used to assess the stability of results from supervised statistical learning.
This package provides functions to estimate a strategic selection estimator. A strategic selection estimator is an agent error model in which the two random components are not assumed to be orthogonal. In addition this package provides generic functions to print and plot objects of its class as well as the necessary functions to create tables for LaTeX. There is also a function to create dyadic data sets.
Fits Stable Isotope Mixing Models (SIMMs) and is meant as a longer term replacement to the previous widely-used package SIAR. SIMMs are used to infer dietary proportions of organisms consuming various food sources from observations on the stable isotope values taken from the organisms tissue samples. However SIMMs can also be used in other scenarios, such as in sediment mixing or the composition of fatty acids. The main functions are simmr_load() and simmr_mcmc(). The two vignettes contain a quick start and a full listing of all the features. The methods used are detailed in the papers Parnell et al 2010 <doi:10.1371/journal.pone.0009672>, and Parnell et al 2013 <doi:10.1002/env.2221>.