Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes a range of scatterplot diagnostics (scagnostics) on pairs of numerical variables in a data set. A range of scagnostics, including graph and association-based scagnostics described by Leland Wilkinson and Graham Wills (2008) <doi:10.1198/106186008X320465> and association-based scagnostics described by Katrin Grimm (2016,ISBN:978-3-8439-3092-5) can be computed. Summary and plotting functions are provided.
Calculates the credit debt for the next period based on the available data using the cross-classification credibility model.
Allows one to assess the stability of individual objects, clusters and whole clustering solutions based on repeated runs of the K-means and K-medoids partitioning algorithms.
There are 6 novel robust tests for equal correlation. They are all based on logistic regressions. The score statistic U is proportion to difference of two correlations based on different types of correlation in 6 methods. The ST1() is based on Pearson correlation. ST2() improved ST1() by using median absolute deviation. ST3() utilized type M correlation and ST4() used Spearman correlation. ST5() and ST6() used two different ways to combine ST3() and ST4(). We highly recommend ST5() according to the article titled New Statistical Methods for Constructing Robust Differential Correlation Networks to characterize the interactions among microRNAs published in Scientific Reports. Please see the reference: Yu et al. (2019) <doi:10.1038/s41598-019-40167-8>.
This package provides an interactive shiny web application for constructing, analyzing, and visualizing composite indices from multidimensional datasets. Users can upload or select indicator data, group variables into logical categories, apply normalization and weighting methods (such as equal or custom schemes), and compute aggregate composite indices. The shiny interface includes tools for exploring results through tables, plots, and data exports, making it useful for researchers, policymakers, and analysts interested in index-based evaluations.
This package provides methods and utilities for testing, identifying, selecting and mutating objects as categorical or continous types. These functions work on both atomic vectors as well as recursive objects: data.frames, data.tables, tibbles, lists, etc..
This package provides the ability to create interaction maps, discover CNV map domains (edges), gene annotate interactions, and create interactive visualizations of these CNV interaction maps.
Variable selection for Gaussian model-based clustering as implemented in the mclust package. The methodology allows to find the (locally) optimal subset of variables in a data set that have group/cluster information. A greedy or headlong search can be used, either in a forward-backward or backward-forward direction, with or without sub-sampling at the hierarchical clustering stage for starting mclust models. By default the algorithm uses a sequential search, but parallelisation is also available.
This package implements higher order likelihood-based inference for logistic and loglinear models.
Resampling is a standard step in particle filtering and in sequential Monte Carlo. This package implements the chopthin resampler, which keeps a bound on the ratio between the largest and the smallest weights after resampling.
Enables DBI compliant packages to integrate with the RStudio connections pane, and the pins package. It automates the display of schemata, tables, views, as well as the preview of the table's top 1000 records.
Fitting and inference functions for generalized linear models with constrained coefficients.
This package provides six variants of two-way correspondence analysis (ca): simple ca, singly ordered ca, doubly ordered ca, non symmetrical ca, singly ordered non symmetrical ca, and doubly ordered non symmetrical ca.
This package provides tools for estimating censored Almost Ideal (AI) and Quadratic Almost Ideal (QUAI) demand systems using Maximum Likelihood Estimation (MLE). It includes functions for calculating demand share equations and the truncated log-likelihood function for a system of equations, incorporating demographic variables. The package is designed to handle censored data, where some observations may be zero due to non-purchase of certain goods. Package also contains a procedure to approximate demand elasticities numerically and estimate standard errors via Delta Method. It is particularly useful for applied researchers analyzing household consumption data.
Enables educational researchers and practitioners to calculate the curricular complexity of a plan of study, visualize its prerequisite structure at scale, and conduct customizable analyses. The original tool can be found at <https://curricularanalytics.org>. Additional functions to explore curriculum complexity from the literature are also included.
Downloads wrangled Colombian socioeconomic, geospatial,population and climate data from DANE <https://www.dane.gov.co/> (National Administrative Department of Statistics) and IDEAM (Institute of Hydrology, Meteorology and Environmental Studies). It solves the problem of Colombian data being issued in different web pages and sources by using functions that allow the user to select the desired database and download it without having to do the exhausting acquisition process.
This package provides text analysis in R, focusing on the use of a tokenized text format. In this format, the positions of tokens are maintained, and each token can be annotated (e.g., part-of-speech tags, dependency relations). Prominent features include advanced Lucene-like querying for specific tokens or contexts (e.g., documents, sentences), similarity statistics for words and documents, exporting to DTM for compatibility with many text analysis packages, and the possibility to reconstruct original text from tokens to facilitate interpretation.
Implementation of the Control Polygon Reduction and Control Net Reduction methods for finding parsimonious B-spline regression models.
This package provides a pair of functions for renaming and encoding data frames using external crosswalk files. It is especially useful when constructing master data sets from multiple smaller data sets that do not name or encode variables consistently across files. Based on similar commands in Stata'.
Record and generate a gif of your R sessions plots. When creating a visualization, there is inevitably iteration and refinement that occurs. Automatically save the plots made to a specified directory, previewing them as they would be saved. Then combine all plots generated into a gif to show the plot refinement over time.
Java JAR files for the Apache Commons Mathematics Library for use by users and other packages.
Conducts conditional random sampling on observed values in sparse matrices. Useful for training and test set splitting sparse matrices prior to model fitting in cross-validation procedures and estimating the predictive accuracy of data imputation methods, such as matrix factorization or singular value decomposition (SVD). Although designed for applications with sparse matrices, CRASSMAT can also be applied to complete matrices, as well as to those containing missing values.
Method to implement some newly developed methods for the estimation of the conditional survival function. See Meira-Machado, Sestelo and Goncalves (2016) <doi:10.1002/bimj.201500038>.
The Core Microbiome refers to the group of microorganisms that are consistently present in a particular environment, habitat, or host species. These microorganisms play a crucial role in the functioning and stability of that ecosystem. Identifying these microorganisms can contribute to the emerging field of personalized medicine. The CoreMicrobiomeR is designed to facilitate the identification, statistical testing, and visualization of this group of microorganisms.This package offers three key functions to analyze and visualize microbial community data. This package has been developed based on the research papers published by Pereira et al.(2018) <doi:10.1186/s12864-018-4637-6> and Beule L, Karlovsky P. (2020) <doi:10.7717/peerj.9593>.