Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides quantitative variant callers for detecting subclonal mutations in ultra-deep (>=100x coverage) sequencing experiments. The deepSNV algorithm is used for a comparative setup with a control experiment of the same loci and uses a beta-binomial model and a likelihood ratio test to discriminate sequencing errors and subclonal SNVs. The shearwater algorithm computes a Bayes classifier based on a beta-binomial model for variant calling with multiple samples for precisely estimating model parameters - such as local error rates and dispersion - and prior knowledge, e.g. from variation data bases such as COSMIC.
AbSeq is a comprehensive bioinformatic pipeline for the analysis of sequencing datasets generated from antibody libraries and abseqR is one of its packages. AbseqR empowers the users of abseqPy with plotting and reporting capabilities and allows them to generate interactive HTML reports for the convenience of viewing and sharing with other researchers. Additionally, abseqR extends abseqPy to compare multiple repertoire analyses and perform further downstream analysis on its output.
This package provides an R interface to Megadepth. It is particularly useful for computing the coverage of a set of genomic regions across bigWig or BAM files. With this package, you can build base-pair coverage matrices for regions or annotations of your choice from BigWig files.
This package provides supporting data for the TCGAbiolinksGUI package.
Genomic data analyses requires integrated visualization of known genomic information and new experimental data. Gviz uses the biomaRt and the rtracklayer packages to perform live annotation queries to Ensembl and UCSC and translates this to e.g. gene/transcript structures in viewports of the grid graphics package. This results in genomic information plotted together with your data.
This is an R package for doublet annotation of single cell RNA sequencing data. scds provides methods to annotate doublets in scRNA-seq data computationally.
This is a package to perform the Adaptive Robust Regression method (ARRm) for the normalization of methylation data from the Illumina Infinium HumanMethylation 450k assay.
This package provides a set of tools for interacting with GO and microarray data. A variety of basic manipulation tools for graphs, hypothesis testing and other simple calculations.
This package is an R program for the subset-based analysis of heterogeneous traits and disease subtypes. ASSET allows the user to search through all possible subsets of z-scores to identify the subset of traits giving the best meta-analyzed z-score. Further, it returns a p-value adjusting for the multiple-testing involved in the search. It also allows for searching for the best combination of disease subtypes associated with each variant.
The SparseArray package is an infrastructure package that provides an array-like container for efficient in-memory representation of multidimensional sparse data in R. The package defines the SparseArray virtual class and two concrete subclasses: COO_SparseArray and SVT_SparseArray. Each subclass uses its own internal representation of the nonzero multidimensional data, the "COO layout" and the "SVT layout", respectively. SVT_SparseArray objects mimic as much as possible the behavior of ordinary matrix and array objects in base R. In particular, they support most of the "standard matrix and array API" defined in base R and in the matrixStats package from CRAN.
This package defines a BigMatrix ReferenceClass which adds safety and convenience features to the filebacked.big.matrix class from the bigmemory package. BigMatrix protects against segfaults by monitoring and gracefully restoring the connection to on-disk data and it also protects against accidental data modification with a file-system-based permissions system. Utilities are provided for using BigMatrix-derived classes as assayData matrices within the Biobase package's eSet family of classes. BigMatrix provides some optimizations related to attaching to, and indexing into, file-backed matrices with dimnames. Additionally, the package provides a BigMatrixFactor class, a file-backed matrix with factor properties.
This package provides an R wrapper around the popular bowtie short read aligner and around SpliceMap, a de novo splice junction discovery and alignment tool.
This package provides Affymetrix HG-U133A Array annotation data (chip hgu133a) assembled using data from public repositories.
This package provides a number of utility functions for handling single-cell RNA-seq data from droplet technologies such as 10X Genomics. This includes data loading from count matrices or molecule information files, identification of cells from empty droplets, removal of barcode-swapped pseudo-cells, and downsampling of the count matrix.
This package provides tools for statistical analysis of assembled transcriptomes, including flexible differential expression analysis, visualization of transcript structures, and matching of assembled transcripts to annotation.
The package enables a simple unified interface to several annotation packages each of which has its own schema by taking advantage of the fact that each of these packages implements a select methods.
RcisTarget identifies transcription factor binding motifs (TFBS) over-represented on a gene list. In a first step, RcisTarget selects DNA motifs that are significantly over-represented in the surroundings of the transcription start site (TSS) of the genes in the gene-set. This is achieved by using a database that contains genome-wide cross-species rankings for each motif. The motifs that are then annotated to TFs and those that have a high Normalized Enrichment Score (NES) are retained. Finally, for each motif and gene-set, RcisTarget predicts the candidate target genes (i.e. genes in the gene-set that are ranked above the leading edge).
This package is a computational tool box for radio-genomic analysis which integrates radio-response data, radio-biological modelling and comprehensive cell line annotations for hundreds of cancer cell lines. The RadioSet class enables creation and manipulation of standardized datasets including information about cancer cells lines, radio-response assays and dose-response indicators. Included methods allow fitting and plotting dose-response data using established radio-biological models along with quality control to validate results. Additional functions related to fitting and plotting dose response curves, quantifying statistical correlation and calculating AUC or SF are included.
This package expands the usethis package with the goal of helping automate the process of creating R packages for Bioconductor or making them Bioconductor-friendly.
This package implements functions for copy number variant calling, plotting, export and analysis from whole-genome single cell sequencing data.
This package provides S4 generic functions modeled after the matrixStats API for alternative matrix implementations. Packages with alternative matrix implementation can depend on this package and implement the generic functions that are defined here for a useful set of row and column summary statistics. Other package developers can import this package and handle a different matrix implementations without worrying about incompatibilities.
This package provides a pipeline for the analysis of GRO-seq data.
iClusterPlus is developed for integrative clustering analysis of multi-type genomic data and is an enhanced version of iCluster proposed and developed by Shen, Olshen and Ladanyi (2009). Multi-type genomic data arise from the experiments where biological samples (e.g. tumor samples) are analyzed by multiple techniques, for instance, array comparative genomic hybridization (aCGH), gene expression microarray, RNA-seq and DNA-seq, and so on. In the iClusterPlus model, binary observations such as somatic mutation are modeled as Binomial processes; categorical observations such as copy number states are realizations of Multinomial random variables; counts are modeled as Poisson random processes; and continuous measures are modeled by Gaussian distributions.
This package provides support for numerical and graphical summaries of RNA-Seq genomic read data. Provided within-lane normalization procedures to adjust for GC-content effect (or other gene-level effects) on read counts: loess robust local regression, global-scaling, and full-quantile normalization. Between-lane normalization procedures to adjust for distributional differences between lanes (e.g., sequencing depth): global-scaling and full-quantile normalization.