Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fits a functional mediation model with a scalar distal outcome. The method is described in detail by Coffman, Dziak, Litson, Chakraborti, Piper & Li (2021) <arXiv:2112.03960>. The model is similar to that of Lindquist (2012) <doi:10.1080/01621459.2012.695640> although allowing a binary outcome as an alternative to a numerical outcome. The current version is a minor bug fix in the vignette. The development of this package was part of a research project supported by National Institutes of Health grants P50 DA039838 from the National Institute of Drug Abuse and 1R01 CA229542-01 from the National Cancer Institute and the NIH Office of Behavioral and Social Science Research. Content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions mentioned above. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
Visualise sequential distributions using a range of plotting styles. Sequential distribution data can be input as either simulations or values corresponding to percentiles over time. Plots are added to existing graphic devices using the fan function. Users can choose from four different styles, including fan chart type plots, where a set of coloured polygon, with shadings corresponding to the percentile values are layered to represent different uncertainty levels. Full details in R Journal article; Abel (2015) <doi:10.32614/RJ-2015-002>.
High-performance tools for transport modeling - network processing, route enumeration, and traffic assignment in R. The package implements the Path-Sized Logit model for traffic assignment - Ben-Akiva and Bierlaire (1999) <doi:10.1007/978-1-4615-5203-1_2> - an efficient route enumeration algorithm, and provides powerful utility functions for (multimodal) network generation, consolidation/contraction, and/or simplification. The user is expected to provide a transport network (either a graph or collection of linestrings) and an origin-destination (OD) matrix of trade/traffic flows. Maintained by transport consultants at CPCS (cpcs.ca).
This package provides a flexible interface to the Financial Modeling Prep API <https://site.financialmodelingprep.com/developer/docs>. The package supports all available endpoints and parameters, enabling R users to interact with a wide range of financial data.
Compare variables of interest between (potentially large numbers of) spatial interactions and meta-variables. Spatial variables are summarized using K, or other, functions, and projected for use in a modified random forest model. The model allows comparison of functional and non-functional variables to each other and to noise, giving statistical significance to the results. Included are preparation, modeling, and interpreting tools along with example datasets, as described in VanderDoes et al., (2023) <doi:10.1101/2023.07.18.549619>.
It implements the Nelson-Siegel and the Nelson-Siegel-Svensson term structures.
This package provides a Bayesian Nonparametric model for the study of time-evolving frequencies, which has become renowned in the study of population genetics. The model consists of a Hidden Markov Model (HMM) in which the latent signal is a distribution-valued stochastic process that takes the form of a finite mixture of Dirichlet Processes, indexed by vectors that count how many times each value is observed in the population. The package implements methodologies presented in Ascolani, Lijoi and Ruggiero (2021) <doi:10.1214/20-BA1206> and Ascolani, Lijoi and Ruggiero (2023) <doi:10.3150/22-BEJ1504> that make it possible to study the process at the time of data collection or to predict its evolution in future or in the past.
The functions provided in the FADA (Factor Adjusted Discriminant Analysis) package aim at performing supervised classification of high-dimensional and correlated profiles. The procedure combines a decorrelation step based on a factor modeling of the dependence among covariates and a classification method. The available methods are Lasso regularized logistic model (see Friedman et al. (2010)), sparse linear discriminant analysis (see Clemmensen et al. (2011)), shrinkage linear and diagonal discriminant analysis (see M. Ahdesmaki et al. (2010)). More methods of classification can be used on the decorrelated data provided by the package FADA.
This package provides tools for training and analysing fairness-aware gated neural networks for subgroup-aware prediction and interpretation in clinical datasets. Methods draw on prior work in mixture-of-experts neural networks by Jordan and Jacobs (1994) <doi:10.1007/978-1-4471-2097-1_113>, fairness-aware learning by Hardt, Price, and Srebro (2016) <doi:10.48550/arXiv.1610.02413>, and personalised treatment prediction for depression by Iniesta, Stahl, and McGuffin (2016) <doi:10.1016/j.jpsychires.2016.03.016>.
This package provides methods to compute linear h-step ahead prediction coefficients based on localised and iterated Yule-Walker estimates and empirical mean squared and absolute prediction errors for the resulting predictors. Also, functions to compute autocovariances for AR(p) processes, to simulate tvARMA(p,q) time series, and to verify an assumption from Kley et al. (2019), Electronic of Statistics, forthcoming. Preprint <arXiv:1611.04460>.
This package performs fragment analysis using genetic data coming from capillary electrophoresis machines. These are files with FSA extension which stands for FASTA-type file, and .txt files from Beckman CEQ 8000 system, both contain DNA fragment intensities read by machinery. In addition to visualization, it performs automatic scoring of SSRs (Sample Sequence Repeats; a type of genetic marker very common across the genome) and other type of PCR markers (standing for Polymerase Chain Reaction) in biparental populations such as F1, F2, BC (backcross), and diversity panels (collection of genetic diversity).
Package for time value of money calculation, time series analysis and computational finance.
New approaches to parallel coordinates plots for multivariate data visualization, including applications to clustering, outlier hunting and regression diagnostics. Includes general functions for multivariate nonparametric density and regression estimation, using parallel computation.
The purpose of this package is to tests whether a given moment of the distribution of a given sample is finite or not. For heavy-tailed distributions with tail exponent b, only moments of order smaller than b are finite. Tail exponent and heavy- tailedness are notoriously difficult to ascertain. But the finiteness of moments (including fractional moments) can be tested directly. This package does that following the test suggested by Trapani (2016) <doi:10.1016/j.jeconom.2015.08.006>.
An R API to MET Norway's Frost API <https://frost.met.no/index.html> to retrieve data as data frames. The Frost API, and the underlying data, is made available by the Norwegian Meteorological Institute (MET Norway). The data and products are distributed under the Norwegian License for Open Data 2.0 (NLOD) <https://data.norge.no/nlod/en/2.0> and Creative Commons 4.0 <https://creativecommons.org/licenses/by/4.0/>.
Fresh biomass determination is the key to evaluating crop genotypes response to diverse input and stress conditions and forms the basis for calculating net primary production. However, as conventional phenotyping approaches for measuring fresh biomass is time-consuming, laborious and destructive, image-based phenotyping methods are being widely used now. In the image-based approach, the fresh weight of the above-ground part of the plant depends on the projected area. For determining the projected area, the visual image of the plant is converted into the grayscale image by simply averaging the Red(R), Green (G) and Blue (B) pixel values. Grayscale image is then converted into a binary image using Otsuâ s thresholding method Otsu, N. (1979) <doi:10.1109/TSMC.1979.4310076> to separate plant area from the background (image segmentation). The segmentation process was accomplished by selecting the pixels with values over the threshold value belonging to the plant region and other pixels to the background region. The resulting binary image consists of white and black pixels representing the plant and background regions. Finally, the number of pixels inside the plant region was counted and converted to square centimetres (cm2) using the reference object (any object whose actual area is known previously) to get the projected area. After that, the projected area is used as input to the machine learning model (Linear Model, Artificial Neural Network, and Support Vector Regression) to determine the plant's fresh weight.
Finds the URL to the favicon for a website. This is useful if you want to display the favicon in an HTML document or web application, especially if the website is behind a firewall.
Estimates the sample size for a test or a trial based on repeated simulation using a model based approach. Implements a method by Maruo et al. (2018) <doi:10.1080/19466315.2017.1349689> and an extension.
This package provides a game for two players: Who gets first four in a row (horizontal, vertical or diagonal) wins. As board game published by Milton Bradley, designed by Howard Wexler and Ned Strongin.
This package implements the algorithm by Briefs and Bläser (2025) <https://openreview.net/forum?id=8PHOPPH35D>, based on the approach of Gupta and Bläser (2024) <doi:10.1609/aaai.v38i18.30023>. It determines, for a structural causal model (SCM) whose directed edges form a tree, whether each parameter is unidentifiable, 1-identifiable or 2-identifiable (other cases cannot occur), using a randomized algorithm with provable running time O(n^3 log^2 n).
This package provides functions for finding smooth interpolating curves connecting a series of points in the plane. Curves may be open or closed, that is, with the first and last point of the curve at the initial point.
Enables the construction of flexible urban delineations that can be tailored to specific applications or research questions, see Van Migerode et al. (2024) <DOI:10.1177/23998083241262545> and Van Migerode et al. (2025) <DOI:10.5281/zenodo.15173220>. Originally developed to flexibly reconstruct the Degree of Urbanisation classification of cities, towns and rural areas developed by Dijkstra et al. (2021) <DOI:10.1016/j.jue.2020.103312>. Now it also support a broader range of delineation approaches, using multiple datasets â including population, built-up area, and night-time light grids â and different thresholding methods.
Statistical tool set for population genetics. The package provides following functions: 1) empirical Bayes estimator of Fst and other measures of genetic differentiation, 2) regression analysis of environmental effects on genetic differentiation using bootstrap method, 3) interfaces to read and manipulate GENEPOP format data files and allele/haplotype frequency format files.
Implementation of Forecastable Component Analysis ('ForeCA'), including main algorithms and auxiliary function (summary, plotting, etc.) to apply ForeCA to multivariate time series data. ForeCA is a novel dimension reduction (DR) technique for temporally dependent signals. Contrary to other popular DR methods, such as PCA or ICA', ForeCA takes time dependency explicitly into account and searches for the most forecastable signal. The measure of forecastability is based on the Shannon entropy of the spectral density of the transformed signal.