Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fork of vote_2.3-2', Raftery et al. (2021) <DOI:10.32614/RJ-2021-086>, with additional support for stochastic experimentation.
This package provides a collection of functions to deal with spatial and spatiotemporal autoregressive conditional heteroscedasticity (spatial ARCH and GARCH models) by Otto, Schmid, Garthoff (2018, Spatial Statistics) <doi:10.1016/j.spasta.2018.07.005>: simulation of spatial ARCH-type processes (spARCH, log/exponential-spARCH, complex-spARCH); quasi-maximum-likelihood estimation of the parameters of spARCH models and spatial autoregressive models with spARCH disturbances, diagnostic checks, visualizations.
Sparse principal component analysis (SPCA) attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few active (nonzero) values. This approach provides better interpretability for the principal components in high-dimensional data settings. This is, because the principal components are formed as a linear combination of only a few of the original variables. This package provides efficient routines to compute SPCA. Specifically, a variable projection solver is used to compute the sparse solution. In addition, a fast randomized accelerated SPCA routine and a robust SPCA routine is provided. Robust SPCA allows to capture grossly corrupted entries in the data. The methods are discussed in detail by N. Benjamin Erichson et al. (2018) <arXiv:1804.00341>.
Modern classes for tracking and movement data, building on sf spatial infrastructure, and early theoretical work from Turchin (1998, ISBN: 9780878938476), and Calenge et al. (2009) <doi:10.1016/j.ecoinf.2008.10.002>. Tracking data are series of locations with at least 2-dimensional spatial coordinates (x,y), a time index (t), and individual identification (id) of the object being monitored; movement data are made of trajectories, i.e. the line representation of the path, composed by steps (the straight-line segments connecting successive locations). sftrack is designed to handle movement of both living organisms and inanimate objects.
This package provides a set of functions for computing potential evapotranspiration and several widely used drought indices including the Standardized Precipitation-Evapotranspiration Index (SPEI).
This package provides data frames that hold certain columns and attributes persistently for data processing in dplyr'.
This software is useful for loading .fasta or .gbk files, and for retrieving sequences from GenBank dataset <https://www.ncbi.nlm.nih.gov/genbank/>. This package allows to detect differences or asymmetries based on nucleotide composition by using local linear kernel smoothers. Also, it is possible to draw inference about critical points (i. e. maximum or minimum points) related with the derivative curves. Additionally, bootstrap methods have been used for estimating confidence intervals and speed computational techniques (binning techniques) have been implemented in seq2R'.
Genomic alterations including single nucleotide substitution, copy number alteration, etc. are the major force for cancer initialization and development. Due to the specificity of molecular lesions caused by genomic alterations, we can generate characteristic alteration spectra, called signature (Wang, Shixiang, et al. (2021) <DOI:10.1371/journal.pgen.1009557> & Alexandrov, Ludmil B., et al. (2020) <DOI:10.1038/s41586-020-1943-3> & Steele Christopher D., et al. (2022) <DOI:10.1038/s41586-022-04738-6>). This package helps users to extract, analyze and visualize signatures from genomic alteration records, thus providing new insight into cancer study.
This data-driven phylogenetic comparative method fits stabilizing selection models to continuous trait data, building on the ouch methodology of Butler and King (2004) <doi:10.1086/426002>. The main functions fit a series of Hansen models using stepwise AIC, then identify cases of convergent evolution where multiple lineages have shifted to the same adaptive peak. For more information see Ingram and Mahler (2013) <doi:10.1111/2041-210X.12034>.
This package provides Sensory and Consumer Data mapping and analysis <doi:10.14569/IJACSA.2017.081266>. The mapping visualization is made available from several features : options in dimension reduction methods and prediction models ranging from linear to non linear regressions. A smoothed version of the map performed using locally weighted regression algorithm is available. A selection process of map stability is provided. A shiny application is included. It presents an easy GUI for the implemented functions as well as a comparative tool of fit models using several criteria. Basic analysis such as characterization of products, panelists and sessions likewise consumer segmentation are also made available.
Sensitivity to unmeasured biases in an observational study that is a full match. Function senfm() performs tests and function senfmCI() creates confidence intervals. The method uses Huber's M-statistics, including least squares, and is described in Rosenbaum (2007, Biometrics) <DOI:10.1111/j.1541-0420.2006.00717.x>.
This package provides functions that compute the spatial covariance matrix for the matern and power classes of spatial models, for data that arise on rectangular units. This code can also be used for the change of support problem and for spatial data that arise on irregularly shaped regions like counties or zipcodes by laying a fine grid of rectangles and aggregating the integrals in a form of Riemann integration.
This package provides a collection of recycled and modified R functions to aid in file manipulation, data exploration, wrangling, optimization, and object manipulation. Other functions aid in convenient data visualization, loop progression, software packaging, and installation.
Fits complex parametric models using the method proposed by Cox and Kartsonaki (2012) without likelihoods.
This package provides a collection of sample datasets on various fields such as automotive performance and safety data to historical demographics and socioeconomic indicators, as well as recreational data. It serves as a resource for researchers and analysts seeking to perform analyses and derive insights from classic data sets in R.
Maximum likelihood estimation for stochastic frontier analysis (SFA) of production (profit) and cost functions. The package includes the basic stochastic frontier for cross-sectional or pooled data with several distributions for the one-sided error term (i.e., Rayleigh, gamma, Weibull, lognormal, uniform, generalized exponential and truncated skewed Laplace), the latent class stochastic frontier model (LCM) as described in Dakpo et al. (2021) <doi:10.1111/1477-9552.12422>, for cross-sectional and pooled data, and the sample selection model as described in Greene (2010) <doi:10.1007/s11123-009-0159-1>, and applied in Dakpo et al. (2021) <doi:10.1111/agec.12683>. Several possibilities in terms of optimization algorithms are proposed.
Calculate change point based on spectral clustering with the option to automatically calculate the number of clusters if this information is not available.
Estimation of mean squared prediction error of a small area predictor is provided. In particular, the recent method of Simple, Unified, Monte-Carlo Assisted approach for the mean squared prediction error estimation of small area predictor is provided. We also provide other existing methods of mean squared prediction error estimation such as jackknife method for the mixed logistic model.
This package provides a switch-case construct for R', as it is known from other programming languages. It allows to test multiple, similar conditions in an efficient, easy-to-read manner, so nested if-else constructs can be avoided. The switch-case construct is designed as an R function that allows to return values depending on which condition is met and lets the programmer flexibly decide whether or not to leave the switch-case construct after a case block has been executed.
This package implements a custom matrix input field.
This package provides SPSS- and SAS-like output for least squares multiple regression, logistic regression, and count variable regressions. Detailed output is also provided for OLS moderated regression, interaction plots, and Johnson-Neyman regions of significance. The output includes standardized coefficients, partial and semi-partial correlations, collinearity diagnostics, plots of residuals, and detailed information about simple slopes for interactions. The output for some functions includes Bayes Factors and, if requested, regression coefficients from Bayesian Markov Chain Monte Carlo analyses. There are numerous options for model plots. The REGIONS_OF_SIGNIFICANCE function also provides Johnson-Neyman regions of significance and plots of interactions for both lm and lme models. There is also a function for partial and semipartial correlations and a function for conducting Cohen's set correlation analyses.
Network sparsification with a variety of novel and known network sparsification techniques. All network sparsification techniques reduce the number of edges, not the number of nodes. Network sparsification is sometimes referred to as network dimensionality reduction. This package is based on the work of Spielman, D., Srivastava, N. (2009)<arXiv:0803.0929>. Koutis I., Levin, A., Peng, R. (2013)<arXiv:1209.5821>. Toivonen, H., Mahler, S., Zhou, F. (2010)<doi:10.1007>. Foti, N., Hughes, J., Rockmore, D. (2011)<doi:10.1371>.
Add fancy CSS effects to your shinydashboards or shiny apps. 100% compatible with shinydashboardPlus and bs4Dash'.
The sufficient forecasting (SF) method is implemented by this package for a single time series forecasting using many predictors and a possibly nonlinear forecasting function. Assuming that the predictors are driven by some latent factors, the SF first conducts factor analysis and then performs sufficient dimension reduction on the estimated factors to derive predictive indices for forecasting. The package implements several dimension reduction approaches, including principal components (PC), sliced inverse regression (SIR), and directional regression (DR). Methods for dimension reduction are as described in: Fan, J., Xue, L. and Yao, J. (2017) <doi:10.1016/j.jeconom.2017.08.009>, Luo, W., Xue, L., Yao, J. and Yu, X. (2022) <doi:10.1093/biomet/asab037> and Yu, X., Yao, J. and Xue, L. (2022) <doi:10.1080/07350015.2020.1813589>.